BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32286492)

  • 1. Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing.
    Zhang K; Lui VCH; Chen Y; Lok CN; Wong KKY
    Sci Rep; 2020 Apr; 10(1):6338. PubMed ID: 32286492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats.
    Pannerselvam B; Dharmalingam Jothinathan MK; Rajenderan M; Perumal P; Pudupalayam Thangavelu K; Kim HJ; Singh V; Rangarajulu SK
    Eur J Pharm Sci; 2017 Mar; 100():187-196. PubMed ID: 28108362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topical delivery of chitosan-capped silver nanoparticles speeds up healing in burn wounds: A preclinical study.
    Oryan A; Alemzadeh E; Tashkhourian J; Nami Ana SF
    Carbohydr Polym; 2018 Nov; 200():82-92. PubMed ID: 30177212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Silver Nanoparticles on Burn Wound Healing in a Mouse Model.
    Wasef LG; Shaheen HM; El-Sayed YS; Shalaby TIA; Samak DH; Abd El-Hack ME; Al-Owaimer A; Saadeldin IM; El-Mleeh A; Ba-Awadh H; Swelum AA
    Biol Trace Elem Res; 2020 Feb; 193(2):456-465. PubMed ID: 31111309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-silver modified porcine small intestinal submucosa for the treatment of infected partial-thickness burn wounds.
    Zhang Y; Xu J; Chai Y; Zhang J; Hu Z; Zhou H
    Burns; 2019 Jun; 45(4):950-956. PubMed ID: 30595540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed topical p38 MAPK inhibition attenuates full-thickness burn wound inflammatory signaling.
    Carter D; Warsen A; Mandell K; Cuschieri J; Maier RV; Arbabi S
    J Burn Care Res; 2014; 35(2):e83-92. PubMed ID: 23666384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tannic acid-modified silver nanoparticles for wound healing: the importance of size.
    Orlowski P; Zmigrodzka M; Tomaszewska E; Ranoszek-Soliwoda K; Czupryn M; Antos-Bielska M; Szemraj J; Celichowski G; Grobelny J; Krzyzowska M
    Int J Nanomedicine; 2018; 13():991-1007. PubMed ID: 29497293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of Silver Nanoparticles in Hydrogel Matrices for Controlling Wound Infection.
    Pangli H; Vatanpour S; Hortamani S; Jalili R; Ghahary A
    J Burn Care Res; 2021 Aug; 42(4):785-793. PubMed ID: 33313805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topical delivery of silver nanoparticles promotes wound healing.
    Tian J; Wong KK; Ho CM; Lok CN; Yu WY; Che CM; Chiu JF; Tam PK
    ChemMedChem; 2007 Jan; 2(1):129-36. PubMed ID: 17075952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low dose radiation attenuates inflammation and promotes wound healing in a mouse burn model.
    Son B; Lee S; Kim H; Kang H; Kim J; Youn H; Nam SY; Youn B
    J Dermatol Sci; 2019 Nov; 96(2):81-89. PubMed ID: 31704228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of green synthesized silver nanoparticles in Burn therapy: a review.
    Mohammed AA; Alqahtani AA; Ahmed MM
    Pharmazie; 2024 May; 79(3):42-48. PubMed ID: 38872274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the wound healing potential of biogenic silver nanoparticles.
    Dhapte V; Kadam S; Moghe A; Pokharkar V
    J Wound Care; 2014 Sep; 23(9):431-2, 434, 436 passim. PubMed ID: 25284295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An injectable metal nanoparticle containing cellulose derivative-based hydrogels: Evaluation of antibacterial and in vitro-vivo wound healing activity in children with burn injuries.
    Qiu Y; Sun X; Lin X; Yi W; Jiang J
    Int Wound J; 2022 Mar; 19(3):666-678. PubMed ID: 34472709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments.
    Stojkovska J; Djurdjevic Z; Jancic I; Bufan B; Milenkovic M; Jankovic R; Miskovic-Stankovic V; Obradovic B
    J Biomater Appl; 2018 Apr; 32(9):1197-1211. PubMed ID: 29463162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model.
    Franková J; Pivodová V; Vágnerová H; Juráňová J; Ulrichová J
    J Appl Biomater Funct Mater; 2016 May; 14(2):e137-42. PubMed ID: 26952588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation.
    Mohseni M; Shamloo A; Aghababaie Z; Afjoul H; Abdi S; Moravvej H; Vossoughi M
    Int J Pharm; 2019 Jun; 564():350-358. PubMed ID: 31028800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles.
    Liu X; Hao W; Lok CN; Wang YC; Zhang R; Wong KK
    J Pediatr Surg; 2014 Dec; 49(12):1846-51. PubMed ID: 25487498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway.
    Li CW; Wang Q; Li J; Hu M; Shi SJ; Li ZW; Wu GL; Cui HH; Li YY; Zhang Q; Yu XH; Lu LC
    Int J Nanomedicine; 2016; 11():373-86. PubMed ID: 26855575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crocodile oil enhances cutaneous burn wound healing and reduces scar formation in rats.
    Li HL; Chen LP; Hu YH; Qin Y; Liang G; Xiong YX; Chen QX
    Acad Emerg Med; 2012 Mar; 19(3):265-73. PubMed ID: 22435858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional Therapeutic High-Valence Silver-Pyridoxine Nanoparticles with Proliferative and Antibacterial Wound-Healing Activities.
    Rangasamy S; Tak YK; Kim S; Paul A; Song JM
    J Biomed Nanotechnol; 2016 Jan; 12(1):182-96. PubMed ID: 27301183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.