These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32286627)

  • 1. rMAPS2: an update of the RNA map analysis and plotting server for alternative splicing regulation.
    Hwang JY; Jung S; Kook TL; Rouchka EC; Bok J; Park JW
    Nucleic Acids Res; 2020 Jul; 48(W1):W300-W306. PubMed ID: 32286627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a.
    Gulledge AA; Roberts AD; Vora H; Patel K; Loraine AE
    Am J Bot; 2012 Feb; 99(2):219-31. PubMed ID: 22291167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors.
    Ye Z; Chen Z; Lan X; Hara S; Sunkel B; Huang TH; Elnitski L; Wang Q; Jin VX
    Nucleic Acids Res; 2014 Mar; 42(5):2856-69. PubMed ID: 24369421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology.
    Pillmann H; Hatje K; Odronitz F; Hammesfahr B; Kollmar M
    BMC Bioinformatics; 2011 Jun; 12():270. PubMed ID: 21718515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Features and Regulation of Co-transcriptional Splicing in Arabidopsis.
    Zhu D; Mao F; Tian Y; Lin X; Gu L; Gu H; Qu LJ; Wu Y; Wu Z
    Mol Plant; 2020 Feb; 13(2):278-294. PubMed ID: 31760161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq.
    Li Y; Rao X; Mattox WW; Amos CI; Liu B
    PLoS One; 2015; 10(9):e0136653. PubMed ID: 26327458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.
    Xia H; Chen D; Wu Q; Wu G; Zhou Y; Zhang Y; Zhang L
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):911-921. PubMed ID: 28733224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA.
    Cho V; Mei Y; Sanny A; Chan S; Enders A; Bertram EM; Tan A; Goodnow CC; Andrews TD
    Genome Biol; 2014 Jan; 15(1):R26. PubMed ID: 24476532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana.
    Raczynska KD; Simpson CG; Ciesiolka A; Szewc L; Lewandowska D; McNicol J; Szweykowska-Kulinska Z; Brown JW; Jarmolowski A
    Nucleic Acids Res; 2010 Jan; 38(1):265-78. PubMed ID: 19864257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intron-centric estimation of alternative splicing from RNA-seq data.
    Pervouchine DD; Knowles DG; Guigó R
    Bioinformatics; 2013 Jan; 29(2):273-4. PubMed ID: 23172860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intron enhancer recognized by splicing factors activates polyadenylation.
    Lou H; Gagel RF; Berget SM
    Genes Dev; 1996 Jan; 10(2):208-19. PubMed ID: 8566754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.
    Sun X; Zuo F; Ru Y; Guo J; Yan X; Sablok G
    Comput Methods Programs Biomed; 2015 Apr; 119(1):53-62. PubMed ID: 25720307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers.
    Muller IB; Meijers S; Kampstra P; van Dijk S; van Elswijk M; Lin M; Wojtuszkiewicz AM; Jansen G; de Jonge R; Cloos J
    BMC Bioinformatics; 2021 Jun; 22(1):347. PubMed ID: 34174808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CASH: a constructing comprehensive splice site method for detecting alternative splicing events.
    Wu W; Zong J; Wei N; Cheng J; Zhou X; Cheng Y; Chen D; Guo Q; Zhang B; Feng Y
    Brief Bioinform; 2018 Sep; 19(5):905-917. PubMed ID: 28387786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing.
    Dittmar KA; Jiang P; Park JW; Amirikian K; Wan J; Shen S; Xing Y; Carstens RP
    Mol Cell Biol; 2012 Apr; 32(8):1468-82. PubMed ID: 22354987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RBP-Maps enables robust generation of splicing regulatory maps.
    Yee BA; Pratt GA; Graveley BR; Van Nostrand EL; Yeo GW
    RNA; 2019 Feb; 25(2):193-204. PubMed ID: 30413564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Cryptic 3' Splice-Sites by SRSF2 Contributes to Cassette Exon Skipping.
    Moon H; Jang HN; Liu Y; Choi N; Oh J; Ha J; Zheng X; Shen H
    Cells; 2019 Jul; 8(7):. PubMed ID: 31295920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.