BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 3228676)

  • 1. Effects of ryanodine on tension development in rat aorta and mesenteric resistance vessels.
    Julou-Schaeffer G; Freslon JL
    Br J Pharmacol; 1988 Oct; 95(2):605-13. PubMed ID: 3228676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cyclopiazonic acid and ryanodine on cytosolic calcium and contraction in vascular smooth muscle.
    Abe F; Karaki H; Endoh M
    Br J Pharmacol; 1996 Aug; 118(7):1711-6. PubMed ID: 8842436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of thapsigargin and ryanodine on vascular contractility: cross-talk between sarcoplasmic reticulum and plasmalemma.
    Low AM; Darby PJ; Kwan CY; Daniel EE
    Eur J Pharmacol; 1993 Jan; 230(1):53-62. PubMed ID: 8428604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of extracellular calcium and nifedipine on alpha 1- and alpha 2-adrenoceptor-mediated contractile responses in isolated rat and cat cerebral and mesenteric arteries.
    Skärby T; Högestätt ED; Andersson KE
    Acta Physiol Scand; 1985 Apr; 123(4):445-56. PubMed ID: 2859736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach to differentiate between noradrenaline-elicited contractile processes in the rat isolated aorta.
    Koch P; Wilffert B; Wilhelm D; Peters T
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Oct; 342(4):454-61. PubMed ID: 2255337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of norepinephrine and caffeine-induced activation by ryanodine and thapsigargin in rat mesenteric arteries.
    Garcha RS; Hughes AD
    J Cardiovasc Pharmacol; 1995 May; 25(5):840-6. PubMed ID: 7630163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of evoked contractions in rat arteries by ryanodine, thapsigargin, and cyclopiazonic acid.
    Shima H; Blaustein MP
    Circ Res; 1992 May; 70(5):968-77. PubMed ID: 1533181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible mechanism of the potent vasoconstrictor responses to ryanodine in dog cerebral arteries.
    Asano M; Kuwako M; Nomura Y; Suzuki Y; Shibuya M; Sugita K; Ito K
    Eur J Pharmacol; 1996 Sep; 311(1):53-60. PubMed ID: 8884236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of halothane and isoflurane on cytosolic calcium ion concentrations and contraction in the vascular smooth muscle of the rat aorta.
    Tsuchida H; Namba H; Yamakage M; Fujita S; Notsuki E; Namiki A
    Anesthesiology; 1993 Mar; 78(3):531-40. PubMed ID: 7681270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoid-salt hypertensive rats.
    Arvola P; Ruskoaho H; Pörsti I
    Br J Pharmacol; 1993 Apr; 108(4):948-58. PubMed ID: 8485634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile anesthetic actions on contractile proteins in membrane-permeabilized small mesenteric arteries.
    Akata T; Boyle WA
    Anesthesiology; 1995 Mar; 82(3):700-12. PubMed ID: 7879938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two different calcium entry pathways in small mesenteric arteries from rat.
    Högestätt ED
    Acta Physiol Scand; 1984 Dec; 122(4):483-95. PubMed ID: 6098138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cromakalim inhibits contractions of the rat isolated mesenteric bed induced by noradrenaline but not caffeine in Ca(2+)-free medium: evidence for interference with receptor-mediated Ca2+ mobilization.
    Quast U; Baumlin Y
    Eur J Pharmacol; 1991 Aug; 200(2-3):239-49. PubMed ID: 1782988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of caffeine-induced contraction and relaxation of rat aortic smooth muscle.
    Watanabe C; Yamamoto H; Hirano K; Kobayashi S; Kanaide H
    J Physiol; 1992 Oct; 456():193-213. PubMed ID: 1338095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actions of 4-chloro-3-ethyl phenol on internal Ca2+ stores in vascular smooth muscle and endothelial cells.
    Low AM; Sormaz L; Kwan CY; Daniel EE
    Br J Pharmacol; 1997 Oct; 122(3):504-10. PubMed ID: 9351507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase C-mediated contractile responses of arteries from diabetic rats.
    Abebe W; MacLeod KM
    Br J Pharmacol; 1990 Oct; 101(2):465-71. PubMed ID: 2257445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-independent vasoconstricting and vasodilating actions of halothane on rat mesenteric resistance blood vessels.
    Boyle WA; Maher GM
    Anesthesiology; 1995 Jan; 82(1):221-35. PubMed ID: 7832305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced contractile responses of arteries from streptozotocin diabetic rats to sodium fluoride.
    Weber LP; Chow WL; Abebe W; MacLeod KM
    Br J Pharmacol; 1996 May; 118(1):115-22. PubMed ID: 8733583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery.
    Noguera I; Medina P; Segarra G; Martínez MC; Aldasoro M; Vila JM; Lluch S
    Br J Pharmacol; 1997 Oct; 122(3):431-8. PubMed ID: 9351498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological investigation of signaling mechanisms contributing to phasic and tonic components of the contractile response of rat arteries to noradrenaline.
    Weber LP; Chow WL; Moshenko J; Belsher S; MacLeod KM
    Can J Physiol Pharmacol; 1995 May; 73(5):594-601. PubMed ID: 7585325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.