These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32286994)

  • 21. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement.
    Segal AD; Shofer JB; Klute GK
    J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation.
    Major MJ; Twiste M; Kenney LP; Howard D
    J Rehabil Res Dev; 2016; 53(6):839-852. PubMed ID: 28273321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes to level ground transtibial amputee gait with a weighted backpack.
    Doyle SS; Lemaire ED; Besemann M; Dudek NL
    Clin Biomech (Bristol, Avon); 2014 Feb; 29(2):149-54. PubMed ID: 24355702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility study of transtibial amputee walking using a powered prosthetic foot.
    Grimmer M; Holgate M; Ward J; Boehler A; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1118-1123. PubMed ID: 28813971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis.
    Vickers DR; Palk C; McIntosh AS; Beatty KT
    Gait Posture; 2008 Apr; 27(3):518-29. PubMed ID: 17707643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordination of Voluntary Residual Muscle Contractions in Transtibial Amputees: a Pilot Study.
    Fleming A; Huang S; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2128-2131. PubMed ID: 30440824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role?
    Boutwell E; Stine R; Gard S
    Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upper body accelerations during level walking in transtibial amputees.
    Paradisi F; Di Stanislao E; Summa A; Brunelli S; Traballesi M; Vannozzi G
    Prosthet Orthot Int; 2019 Apr; 43(2):204-212. PubMed ID: 30112983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Personalized design of ankle-foot prosthesis based on computer modeling of amputee locomotion.
    Gharini M; Mohammadi Moghaddam M; Farahmand F
    Assist Technol; 2020; 32(2):100-108. PubMed ID: 29944462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dead spot phenomenon in prosthetic gait: Quantified with an analysis of center of pressure progression and its velocity in the sagittal plane.
    Klenow TD; Kahle JT; Highsmith MJ
    Clin Biomech (Bristol, Avon); 2016 Oct; 38():56-62. PubMed ID: 27580450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sex Differences in Spatiotemporal Gait Parameters of Transtibial Amputees.
    Carswell TMR; Hordacre BG; Klimstra MD; Giles JW
    J Appl Biomech; 2023 Feb; 39(1):1-9. PubMed ID: 36379211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses.
    Chen B; Wang Q; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2545-8. PubMed ID: 25570509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pilot study to test the influence of specific prosthetic features in preventing trans-tibial amputees from walking like able-bodied subjects.
    Stefanyshyn DJ; Engsberg JR; Tedford KG; Harder JA
    Prosthet Orthot Int; 1994 Dec; 18(3):180-90. PubMed ID: 7724351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Step Frequency and Step Length of 200-m Sprint in Able-bodied and Amputee Sprinters.
    Hobara H; Sano Y; Kobayashi Y; Heldoorn TA; Mochimaru M
    Int J Sports Med; 2016 Feb; 37(2):165-8. PubMed ID: 26509370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.