These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32286998)

  • 1. Integrated Head-Tilt and Electromyographic Cursor Control.
    Vojtech JM; Hablani S; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1442-1451. PubMed ID: 32286998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cursor Click Modality in an Accelerometer-Based Computer Access Device.
    Groll MD; Hablani S; Vojtech JM; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1566-1572. PubMed ID: 32634095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Touchless Head-Control (THC): Head Gesture Recognition for Cursor and Orientation Control.
    Rahmaniar W; Ma'Arif A; Lin TL
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1817-1828. PubMed ID: 35771790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia.
    Williams MR; Kirsch RF
    J Rehabil Res Dev; 2016; 53(4):519-30. PubMed ID: 27532681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control.
    Vojtech JM; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1566-1576. PubMed ID: 29994124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An SEMG computer interface using three myoelectric sites for proportional two-dimensional cursor motion control and clicking for individuals with spinal cord injuries.
    Choi C; Na Y; Rim B; Kim Y; Kang S; Kim J
    Med Eng Phys; 2013 Jun; 35(6):777-83. PubMed ID: 22939517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional cursor-to-target control from single muscle site sEMG signals.
    Perez-Maldonado C; Wexler AS; Joshi SS
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):203-9. PubMed ID: 20071278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study.
    Lyons KR; Joshi SS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650428. PubMed ID: 24187246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of facial electromyography in computer mouse access for people with disabilities.
    Huang CN; Chen CH; Chung HY
    Disabil Rehabil; 2006 Feb; 28(4):231-7. PubMed ID: 16467058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.
    Barszap AG; Skavhaug IM; Joshi SS
    Hum Mov Sci; 2016 Oct; 49():225-38. PubMed ID: 27455381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forearm electromyographic changes with the use of a haptic force-feedback computer mouse.
    Dennerlein JT; DiMarino MH
    Hum Factors; 2006; 48(1):130-41. PubMed ID: 16696263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined sEMG and accelerometer system for monitoring functional activity in stroke.
    Roy SH; Cheng MS; Chang SS; Moore J; De Luca G; Nawab SH; De Luca CJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):585-94. PubMed ID: 20051332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries.
    Choi C; Rim B; Kim J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975386. PubMed ID: 22275590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of tooth-click triggering and speech recognition in assistive technology for computer access.
    Simpson T; Gauthier M; Prochazka A
    Neurorehabil Neural Repair; 2010 Feb; 24(2):188-94. PubMed ID: 19679651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete vs. continuous surface electromyographic interface control.
    Cler MJ; Michener CM; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4374-7. PubMed ID: 25570961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface electromyographic control of a novel phonemic interface for speech synthesis.
    Cler GJ; Nieto-Castañón A; Guenther FH; Fager SK; Stepp CE
    Augment Altern Commun; 2016 Jun; 32(2):120-30. PubMed ID: 27141992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based communication and control: speed-accuracy relationships.
    McFarland DJ; Wolpaw JR
    Appl Psychophysiol Biofeedback; 2003 Sep; 28(3):217-31. PubMed ID: 12964453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.