These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 32287272)
1. Advanced machine learning model for better prediction accuracy of soil temperature at different depths. Alizamir M; Kisi O; Ahmed AN; Mert C; Fai CM; Kim S; Kim NW; El-Shafie A PLoS One; 2020; 15(4):e0231055. PubMed ID: 32287272 [TBL] [Abstract][Full Text] [Related]
2. Extreme learning machine for soil temperature prediction using only air temperature as input. Belouz K; Zereg S Environ Monit Assess; 2023 Jul; 195(8):962. PubMed ID: 37454387 [TBL] [Abstract][Full Text] [Related]
3. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Deo RC; Şahin M Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409 [TBL] [Abstract][Full Text] [Related]
4. Predicting daily soil temperature at multiple depths using hybrid machine learning models for a semi-arid region in Punjab, India. Malik A; Tikhamarine Y; Sihag P; Shahid S; Jamei M; Karbasi M Environ Sci Pollut Res Int; 2022 Oct; 29(47):71270-71289. PubMed ID: 35597830 [TBL] [Abstract][Full Text] [Related]
5. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Heddam S; Kisi O Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629 [TBL] [Abstract][Full Text] [Related]
6. Modeling Soil Temperature for Different Days Using Novel Quadruplet Loss-Guided LSTM. Wang X; Li W; Li Q; Li X Comput Intell Neurosci; 2022; 2022():9016823. PubMed ID: 35222636 [TBL] [Abstract][Full Text] [Related]
7. Estimating salt content of vegetated soil at different depths with Sentinel-2 data. Chen Y; Qiu Y; Zhang Z; Zhang J; Chen C; Han J; Liu D PeerJ; 2020; 8():e10585. PubMed ID: 33391883 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
9. Modeling seasonal variations of long-term soil CO Yılmaz G; Bilgili AV Environ Monit Assess; 2018 Jul; 190(8):486. PubMed ID: 30039438 [TBL] [Abstract][Full Text] [Related]
10. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models. Bilgili M; Sahin B; Sangun L Environ Monit Assess; 2013 Jan; 185(1):347-58. PubMed ID: 22322408 [TBL] [Abstract][Full Text] [Related]
11. Dissolved oxygen prediction using a new ensemble method. Kisi O; Alizamir M; Docheshmeh Gorgij A Environ Sci Pollut Res Int; 2020 Mar; 27(9):9589-9603. PubMed ID: 31925684 [TBL] [Abstract][Full Text] [Related]
12. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China. Luo J; Dou X; Ma M Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293705 [TBL] [Abstract][Full Text] [Related]
14. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. Yi HS; Park S; An KG; Kwak KC Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30248912 [TBL] [Abstract][Full Text] [Related]
15. Estimating the incubated river water quality indicator based on machine learning and deep learning paradigms: BOD5 Prediction. Kim S; Alizamir M; Seo Y; Heddam S; Chung IM; Kim YO; Kisi O; Singh VP Math Biosci Eng; 2022 Sep; 19(12):12744-12773. PubMed ID: 36654020 [TBL] [Abstract][Full Text] [Related]
16. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Deo RC; Downs N; Parisi AV; Adamowski JF; Quilty JM Environ Res; 2017 May; 155():141-166. PubMed ID: 28222363 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Tikhamarine Y; Malik A; Souag-Gamane D; Kisi O Environ Sci Pollut Res Int; 2020 Aug; 27(24):30001-30019. PubMed ID: 32445152 [TBL] [Abstract][Full Text] [Related]
18. Improving the accuracy of air relative humidity prediction using hybrid machine learning based on empirical mode decomposition: a comparative study. Merabet K; Heddam S Environ Sci Pollut Res Int; 2023 May; 30(21):60868-60889. PubMed ID: 37041358 [TBL] [Abstract][Full Text] [Related]
19. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea. Kim S; Alizamir M; Zounemat-Kermani M; Kisi O; Singh VP J Environ Manage; 2020 Sep; 270():110834. PubMed ID: 32507742 [TBL] [Abstract][Full Text] [Related]
20. Prediction of soil water contents and erodibility indices based on artificial neural networks: using topography and remote sensing. Usta A Environ Monit Assess; 2022 Sep; 194(10):794. PubMed ID: 36109443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]