These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 32287272)
21. Machine learning models for daily net radiation prediction across different climatic zones of China. Yu H; Jiang S; Chen M; Wang M; Shi R; Li S; Wu J; Kui X; Zou H; Zhan C Sci Rep; 2024 Sep; 14(1):20454. PubMed ID: 39227663 [TBL] [Abstract][Full Text] [Related]
22. Development of a robust daily soil temperature estimation in semi-arid continental climate using meteorological predictors based on computational intelligent paradigms. Alizamir M; Ahmed KO; Kim S; Heddam S; Gorgij AD; Chang SW PLoS One; 2023; 18(12):e0293751. PubMed ID: 38150451 [TBL] [Abstract][Full Text] [Related]
23. Predicting river dissolved oxygen time series based on stand-alone models and hybrid wavelet-based models. Xu C; Chen X; Zhang L J Environ Manage; 2021 Oct; 295():113085. PubMed ID: 34147993 [TBL] [Abstract][Full Text] [Related]
24. Modeling monthly reference evapotranspiration process in Turkey: application of machine learning methods. Bayram S; Çıtakoğlu H Environ Monit Assess; 2022 Nov; 195(1):67. PubMed ID: 36329360 [TBL] [Abstract][Full Text] [Related]
25. Predicting the concentration of indoor culturable fungi using a kernel-based extreme learning machine (K-ELM). Liu Z; Ma S; Wu L; Yin H; Cao G Int J Environ Health Res; 2020 Jun; 30(3):344-356. PubMed ID: 31030541 [TBL] [Abstract][Full Text] [Related]
26. Linear and nonlinear modeling approaches for urban air quality prediction. Singh KP; Gupta S; Kumar A; Shukla SP Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239 [TBL] [Abstract][Full Text] [Related]
27. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data. Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648 [TBL] [Abstract][Full Text] [Related]
28. A Comparative Assessment of the Influences of Human Impacts on Soil Cd Concentrations Based on Stepwise Linear Regression, Classification and Regression Tree, and Random Forest Models. Qiu L; Wang K; Long W; Wang K; Hu W; Amable GS PLoS One; 2016; 11(3):e0151131. PubMed ID: 26964095 [TBL] [Abstract][Full Text] [Related]
29. Machine learning approach for the estimation of missing precipitation data: a case study of South Korea. Han H; Kim B; Kim K; Kim D; Kim HS Water Sci Technol; 2023 Aug; 88(3):556-571. PubMed ID: 37578874 [TBL] [Abstract][Full Text] [Related]
30. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Li Y; Jiang P; She Q; Lin G Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320 [TBL] [Abstract][Full Text] [Related]
31. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Barzegar R; Fijani E; Asghari Moghaddam A; Tziritis E Sci Total Environ; 2017 Dec; 599-600():20-31. PubMed ID: 28463698 [TBL] [Abstract][Full Text] [Related]
32. SoilGrids250m: Global gridded soil information based on machine learning. Hengl T; Mendes de Jesus J; Heuvelink GB; Ruiperez Gonzalez M; Kilibarda M; Blagotić A; Shangguan W; Wright MN; Geng X; Bauer-Marschallinger B; Guevara MA; Vargas R; MacMillan RA; Batjes NH; Leenaars JG; Ribeiro E; Wheeler I; Mantel S; Kempen B PLoS One; 2017; 12(2):e0169748. PubMed ID: 28207752 [TBL] [Abstract][Full Text] [Related]
33. Intercomparison of SWAT and ANN techniques in simulating streamflows in the Astore Basin of the Upper Indus. Khan S; Khan AU; Khan M; Khan FA; Khan S; Khan J Water Sci Technol; 2023 Oct; 88(7):1847-1862. PubMed ID: 37831000 [TBL] [Abstract][Full Text] [Related]
34. Online sequential, outlier robust, and parallel layer perceptron extreme learning machine models for sediment transport in sewer pipes. Kouzehkalani Sales A; Gul E; Safari MJS Environ Sci Pollut Res Int; 2023 Mar; 30(14):39637-39652. PubMed ID: 36596972 [TBL] [Abstract][Full Text] [Related]
35. Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Lu Q; Tian S; Wei L Sci Total Environ; 2023 Jan; 856(Pt 2):159171. PubMed ID: 36191697 [TBL] [Abstract][Full Text] [Related]
36. Simulating response of N2O emissions to fertiliser N application and climatic variability from a rain-fed and wheat-cropped soil in Western Australia. Li Y; Barton L; Chen D J Sci Food Agric; 2012 Mar; 92(5):1130-43. PubMed ID: 21953483 [TBL] [Abstract][Full Text] [Related]
37. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China. Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665 [TBL] [Abstract][Full Text] [Related]
38. Testing and application of simple semi-analytical models for soil temperature estimation and prediction in environmental assessments. Tsiros IX; Droulia F; Thoma E; Psiloglou B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):837-841. PubMed ID: 28448749 [TBL] [Abstract][Full Text] [Related]
39. Coupling artificial neural network and sperm swarm optimization for soil temperature prediction at multiple depths. Sharafi M; Ghorbani MA; Barzegar R; Samadianfard S Environ Sci Pollut Res Int; 2024 Oct; 31(47):57903-57919. PubMed ID: 39302582 [TBL] [Abstract][Full Text] [Related]
40. An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model. Moghadam SV; Sharafati A; Feizi H; Marjaie SMS; Asadollah SBHS; Motta D Environ Monit Assess; 2021 Nov; 193(12):798. PubMed ID: 34773156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]