These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32287969)

  • 1. Human exhalation characterization with the aid of schlieren imaging technique.
    Xu C; Nielsen PV; Liu L; Jensen RL; Gong G
    Build Environ; 2017 Feb; 112():190-199. PubMed ID: 32287969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing exhaled airflow from breathing and talking.
    Gupta JK; Lin CH; Chen Q
    Indoor Air; 2010 Feb; 20(1):31-9. PubMed ID: 20028433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on the applied techniques of exhaled airflow and droplets characterization.
    Mahjoub Mohammed Merghani K; Sagot B; Gehin E; Da G; Motzkus C
    Indoor Air; 2021 Jan; 31(1):7-25. PubMed ID: 33206424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of air stability and metabolic rate on exhaled flow.
    Xu C; Nielsen PV; Gong G; Jensen RL; Liu L
    Indoor Air; 2015 Apr; 25(2):198-209. PubMed ID: 24920328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the exhaled breath of a manikin and human subjects.
    Xu C; Nielsen PV; Gong G; Liu L; Jensen RL
    Indoor Air; 2015 Apr; 25(2):188-97. PubMed ID: 24837295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission of droplet-conveyed infectious agents such as SARS-CoV-2 by speech and vocal exercises during speech therapy: preliminary experiment concerning airflow velocity.
    Giovanni A; Radulesco T; Bouchet G; Mattei A; Révis J; Bogdanski E; Michel J
    Eur Arch Otorhinolaryngol; 2021 May; 278(5):1687-1692. PubMed ID: 32676677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplified models for exhaled airflow from a cough with the mouth covered.
    Chen C; Lin CH; Jiang Z; Chen Q
    Indoor Air; 2014 Dec; 24(6):580-91. PubMed ID: 24628862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-person movement-induced airflow and the effects on virus-laden expiratory droplet dispersion in indoor environments.
    Wu J; Geng J; Fu M; Weng W
    Indoor Air; 2022 Sep; 32(9):e13119. PubMed ID: 36168216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct or indirect exposure of exhaled contaminants in stratified environments using an integral model of an expiratory jet.
    Liu F; Zhang C; Qian H; Zheng X; Nielsen PV
    Indoor Air; 2019 Jul; 29(4):591-603. PubMed ID: 31025421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time imaging of airflow patterns and impact of infection control measures in ophthalmic practice: a pandemic perspective.
    Srivastava S; Vasavada V; Vasavada AR; Sudhalkar A; Kothari A; Vasavada SA
    J Cataract Refract Surg; 2021 Jul; 47(7):842-846. PubMed ID: 33315732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry.
    Han M; Ooka R; Kikumoto H; Oh W; Bu Y; Hu S
    Build Environ; 2021 Nov; 205():108293. PubMed ID: 34908645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pulmonary ventilation rate and breathing cycle period on the risk of cross-infection.
    Ai Z; Hashimoto K; Melikov AK
    Indoor Air; 2019 Nov; 29(6):993-1004. PubMed ID: 31315146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of transient indoor airflow and virus-laden droplet dispersion: Impact of interactive human movement.
    Wu J; Weng W; Fu M; Li Y
    Sci Total Environ; 2023 Apr; 869():161750. PubMed ID: 36690100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies.
    Olmedo I; Nielsen PV; Ruiz de Adana M; Jensen RL; Grzelecki P
    Indoor Air; 2012 Feb; 22(1):64-76. PubMed ID: 21815935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitatively Visualizing Airborne Disease Transmission Risks of Different Exhalation Activities through CO
    Peng Y; Yao M
    Environ Sci Technol; 2023 May; 57(17):6865-6875. PubMed ID: 37074044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airflow detailed analysis through a face mask using the schlieren technique.
    Alvarez-Herrera C; Murillo-Ramirez JG
    Heliyon; 2024 Jun; 10(12):e33384. PubMed ID: 39027447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental analysis of the air velocity and contaminant dispersion of human exhalation flows.
    Berlanga FA; Olmedo I; Ruiz de Adana M
    Indoor Air; 2017 Jul; 27(4):803-815. PubMed ID: 27859708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects.
    Fabian P; Brain J; Houseman EA; Gern J; Milton DK
    J Aerosol Med Pulm Drug Deliv; 2011 Jun; 24(3):137-47. PubMed ID: 21361786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow visualization of an N95 respirator with and without an exhalation valve using schlieren imaging and light scattering.
    Staymates M
    Phys Fluids (1994); 2020 Nov; 32(11):111703. PubMed ID: 33244212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A schlieren optical study of the human cough with and without wearing masks for aerosol infection control.
    Tang JW; Liebner TJ; Craven BA; Settles GS
    J R Soc Interface; 2009 Dec; 6 Suppl 6(Suppl 6):S727-36. PubMed ID: 19815575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.