These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32288038)

  • 1. Low re-inhalation of the exhaled flow during normal nasal breathing in a pediatric airway replica.
    Wei J; Tang JW; Borojeni AAT; Yin S; Martin A; Finlay WH; Li Y
    Build Environ; 2016 Feb; 97():40-47. PubMed ID: 32288038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath.
    Spaněl P; Dryahina K; Smith D
    J Breath Res; 2013 Mar; 7(1):017106. PubMed ID: 23445832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery.
    Bahmanzadeh H; Abouali O; Faramarzi M; Ahmadi G
    Comput Biol Med; 2015 Jun; 61():8-18. PubMed ID: 25862997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breathing zone and exhaled air re-inhalation rate under transient conditions assessed with a computer-simulated person.
    Kuga K; Wargocki P; Ito K
    Indoor Air; 2022 Feb; 32(2):e13003. PubMed ID: 35225397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways.
    Lizal F; Elcner J; Jedelsky J; Maly M; Jicha M; Farkas Á; Belka M; Rehak Z; Adam J; Brinek A; Laznovsky J; Zikmund T; Kaiser J
    J Aerosol Sci; 2020 Dec; 150():105649. PubMed ID: 32904428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TR-PIV measurement of exhaled flow using a breathing thermal manikin.
    Feng L; Yao S; Sun H; Jiang N; Liu J
    Build Environ; 2015 Dec; 94():683-693. PubMed ID: 32288037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N95 respirator mask breathing leads to excessive carbon dioxide inhalation and reduced heat transfer in a human nasal cavity.
    Salati H; Khamooshi M; Vahaji S; Christo FC; Fletcher DF; Inthavong K
    Phys Fluids (1994); 2021 Aug; 33(8):081913. PubMed ID: 34552313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nasal contribution to breathing and fine particle deposition in children versus adults.
    Bennett WD; Zeman KL; Jarabek AM
    J Toxicol Environ Health A; 2008; 71(3):227-37. PubMed ID: 18097948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory.
    Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J
    Part Fibre Toxicol; 2019 Jan; 16(1):6. PubMed ID: 30683122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased levels of exhaled nitric oxide during nasal and oral breathing in subjects with seasonal rhinitis.
    Martin U; Bryden K; Devoy M; Howarth P
    J Allergy Clin Immunol; 1996 Mar; 97(3):768-72. PubMed ID: 8613633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics.
    Xi J; Si X; Zhou Y; Kim J; Berlinski A
    Respir Care; 2014 Feb; 59(2):263-73. PubMed ID: 23821760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model.
    Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG
    J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of airflow in the human nasal cavity.
    Keyhani K; Scherer PW; Mozell MM
    J Biomech Eng; 1995 Nov; 117(4):429-41. PubMed ID: 8748525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exhaled air dispersion and removal is influenced by isolation room size and ventilation settings during oxygen delivery via nasal cannula.
    Hui DS; Chow BK; Chu L; Ng SS; Lai ST; Gin T; Chan MT
    Respirology; 2011 Aug; 16(6):1005-13. PubMed ID: 21605275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing exhaled airflow from breathing and talking.
    Gupta JK; Lin CH; Chen Q
    Indoor Air; 2010 Feb; 20(1):31-9. PubMed ID: 20028433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.
    Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamic and direct visualization model for the study of nasal airflow.
    Simmen D; Scherrer JL; Moe K; Heinz B
    Arch Otolaryngol Head Neck Surg; 1999 Sep; 125(9):1015-21. PubMed ID: 10488989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.