These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32288992)

  • 1. Study on the motion law of aerosols produced by human respiration under the action of thermal plume of different intensities.
    Feng G; Bi Y; Zhang Y; Cai Y; Huang K
    Sustain Cities Soc; 2020 Mar; 54():101935. PubMed ID: 32288992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the human body's microclimate using a thermal manikin.
    Voelker C; Maempel S; Kornadt O
    Indoor Air; 2014 Dec; 24(6):567-79. PubMed ID: 24666331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The investigation of the influence of thermal plume and breathing on sleeping microenvironment.
    Cheng Z; Lei N; Cao G; Li B
    J Environ Health Sci Eng; 2021 Jun; 19(1):1087-1106. PubMed ID: 34150297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How human thermal plume influences near-human transport of respiratory droplets and airborne particles: a review.
    Sun S; Li J; Han J
    Environ Chem Lett; 2021; 19(3):1971-1982. PubMed ID: 33495695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the convective heat transfer coefficient for a sleeping infant in a ventilation room.
    Jiang S; Zhang M; Wang S; Li J
    Indoor Air; 2022 Oct; 32(10):e13126. PubMed ID: 36305055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.
    Cheng Y; Lin Z
    Indoor Air; 2016 Apr; 26(2):274-85. PubMed ID: 25857272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantify impacted scope of human expired air under different head postures and varying exhalation rates.
    Zhang TT; Yin S; Wang S
    Build Environ; 2011 Oct; 46(10):1928-1936. PubMed ID: 32288011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hood nebulization: effects of head direction and breathing mode on particle inhalability and deposition in a 7-month-old infant model.
    Kim J; Xi J; Si X; Berlinski A; Su WC
    J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):209-18. PubMed ID: 23808762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission.
    Wang L; Lin T; Da Costa H; Zhu S; Stockman T; Kumar A; Weaver J; Spede M; Milton DK; Hertzberg J; Toohey DW; Vance ME; Miller SL; Srebric J
    Indoor Air; 2022 Jun; 32(6):e13064. PubMed ID: 35762243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement and prediction of indoor air quality using a breathing thermal manikin.
    Melikov A; Kaczmarczyk J
    Indoor Air; 2007 Feb; 17(1):50-9. PubMed ID: 17257152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison between tracer gas and aerosol particles distribution indoors: The impact of ventilation rate, interaction of airflows, and presence of objects.
    Bivolarova M; Ondráček J; Melikov A; Ždímal V
    Indoor Air; 2017 Nov; 27(6):1201-1212. PubMed ID: 28378912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus.
    Zanganeh Kia H; Choi Y; Nelson D; Park J; Pouyaei A
    Sci Total Environ; 2023 Sep; 891():164694. PubMed ID: 37290661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of social distancing of preventing airborne transmission in open space with lateral wind direction, taking into account temperature of human body and floor surface.
    Issakhov A; Omarova P; Abylkassymova A
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):33206-33228. PubMed ID: 36478554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of airborne transmission from coughing processes with thermal plume adjacent to body and radiators on effectiveness of social distancing.
    Issakhov A; Omarova P; Borsikbayeva A
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66808-66840. PubMed ID: 35508854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human convective boundary layer and its interaction with room ventilation flow.
    Licina D; Melikov A; Sekhar C; Tham KW
    Indoor Air; 2015 Feb; 25(1):21-35. PubMed ID: 24750235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFD of the diffusion movement and concentration distribution of culinary particles in the respiratory zone of restaurant diners.
    Wang X; Liu S; Yang M; Zhao JC; Li T
    Heliyon; 2024 Jul; 10(13):e33610. PubMed ID: 39027523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
    Grinshpun SA; Mainelis G; Trunov M; Adhikari A; Reponen T; Willeke K
    Indoor Air; 2005 Aug; 15(4):235-45. PubMed ID: 15982270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and simulated evaluations of airborne contaminant exposure in a room with a modified localized laminar airflow system.
    Cheng Z; Aganovic A; Cao G; Bu Z
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30642-30663. PubMed ID: 33587275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convective and radiative heat transfer coefficients for individual human body segments.
    de Dear RJ; Arens E; Hui Z; Oguro M
    Int J Biometeorol; 1997 May; 40(3):141-56. PubMed ID: 9195861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient CFD simulation of the respiration process and inter-person exposure assessment.
    Gao N; Niu J
    Build Environ; 2006 Sep; 41(9):1214-1222. PubMed ID: 32287998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.