These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32289599)
21. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell. Gangadharan P; Nambi IM Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633 [TBL] [Abstract][Full Text] [Related]
22. Preparation of Activated Carbon Supported Bead String Structure Nano Zero Valent Iron in a Polyethylene Glycol-Aqueous Solution and Its Efficient Treatment of Cr(VI) Wastewater. Jiao C; Tan X; Lin A; Yang W Molecules; 2019 Dec; 25(1):. PubMed ID: 31877736 [TBL] [Abstract][Full Text] [Related]
23. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. Xie Y; Lu G; Tao X; Wen Z; Dang Z J Hazard Mater; 2022 Jan; 422():126952. PubMed ID: 34449341 [TBL] [Abstract][Full Text] [Related]
24. Removal of chromium(VI) by MnFe Li N; Li W; Fu F Environ Sci Pollut Res Int; 2019 Oct; 26(29):30498-30507. PubMed ID: 31444724 [TBL] [Abstract][Full Text] [Related]
25. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells. Yang W; Logan BE ChemSusChem; 2016 Aug; 9(16):2226-32. PubMed ID: 27416965 [TBL] [Abstract][Full Text] [Related]
26. Effective immobilization of hexavalent chromium from drinking water by nano-FeOOH coating activated carbon: Adsorption and reduction. Li B; Zhang L; Yin W; Lv S; Li P; Zheng X; Wu J J Environ Manage; 2021 Jan; 277():111386. PubMed ID: 33049610 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms of chromium(VI) removal from solution by zeolite and vermiculite modified with iron(II). Rosa MIG; Boga GA; Cruz SSV; Andrade FRD; Furquim SAC; Shinzato MC Environ Sci Pollut Res Int; 2022 Jul; 29(33):49724-49738. PubMed ID: 35218482 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of Nanoscale Zerovalent Iron (nZVI) Supported on Biochar for Chromium Remediation from Aqueous Solution and Soil. Wang H; Zhang M; Li H Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31726717 [TBL] [Abstract][Full Text] [Related]
29. Preparation and Cr(VI) removal performance of corncob activated carbon. Li H; Gao P; Cui J; Zhang F; Wang F; Cheng J Environ Sci Pollut Res Int; 2018 Jul; 25(21):20743-20755. PubMed ID: 29754303 [TBL] [Abstract][Full Text] [Related]
30. Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II). Zhao C; Hu L; Zhang C; Wang S; Wang X; Huo Z Environ Pollut; 2021 Oct; 287():117303. PubMed ID: 34010759 [TBL] [Abstract][Full Text] [Related]
31. One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution. Liang S; Shi S; Zhang H; Qiu J; Yu W; Li M; Gan Q; Yu W; Xiao K; Liu B; Hu J; Hou H; Yang J Sci Total Environ; 2019 Dec; 695():133886. PubMed ID: 31422325 [TBL] [Abstract][Full Text] [Related]
32. Enhanced Cr (VI) removal with Pb (II) presence by Fe Pei K; Liu T Environ Technol; 2023 Jun; 44(15):2215-2229. PubMed ID: 34986747 [TBL] [Abstract][Full Text] [Related]
33. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Xia S; Song Z; Jeyakumar P; Bolan N; Wang H Environ Geochem Health; 2020 Jun; 42(6):1543-1567. PubMed ID: 31673917 [TBL] [Abstract][Full Text] [Related]
34. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron. Liu T; Rao P; Lo IM Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679 [TBL] [Abstract][Full Text] [Related]
35. Iron-sulphur transformation control for enhancing Cr(VI) removal in flake and nanoscale porous pyrrhotite (Fe Li C; Jin L; Wang W; Xiang M; Wang C; Huang Y; Li S; Lu Z; Zhang J; Yang Z; Li H J Hazard Mater; 2022 Aug; 436():129079. PubMed ID: 35739692 [TBL] [Abstract][Full Text] [Related]
36. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production. Mu C; Wang L; Wang L Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498 [TBL] [Abstract][Full Text] [Related]
37. Enhanced Cr(VI) removal and stabilization from bioleached wastewater by zero-valent iron coupled with hetero and autotrophic bacteria. Yang Y; Li B; Li M; Deng Z; Chen Z; Wu J J Environ Manage; 2024 Aug; 366():121761. PubMed ID: 38991332 [TBL] [Abstract][Full Text] [Related]
38. Interaction between hexavalent chromium and biologically formed iron mineral-biochar composites: Kinetics, products and mechanisms. Liu L; Liu G; Zhou J; Jin R J Hazard Mater; 2021 Mar; 405():124246. PubMed ID: 33097346 [TBL] [Abstract][Full Text] [Related]
39. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Qian L; Shang X; Zhang B; Zhang W; Su A; Chen Y; Ouyang D; Han L; Yan J; Chen M Chemosphere; 2019 Jan; 215():739-745. PubMed ID: 30347367 [TBL] [Abstract][Full Text] [Related]
40. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments. Kantar C; Ari C; Keskin S; Dogaroglu ZG; Karadeniz A; Alten A J Contam Hydrol; 2015 Mar; 174():28-38. PubMed ID: 25644191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]