These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32289893)
1. Stochastic heat engine using an active particle. Kumari A; Pal PS; Saha A; Lahiri S Phys Rev E; 2020 Mar; 101(3-1):032109. PubMed ID: 32289893 [TBL] [Abstract][Full Text] [Related]
2. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related]
3. Energetics of a simple microscopic heat engine. Asfaw M; Bekele M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690 [TBL] [Abstract][Full Text] [Related]
4. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Park JM; Chun HM; Noh JD Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096 [TBL] [Abstract][Full Text] [Related]
5. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C; Ding Z; Chen L; Ge Y; Feng H Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398 [TBL] [Abstract][Full Text] [Related]
6. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Chen YH; Chen JF; Fei Z; Quan HT Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948 [TBL] [Abstract][Full Text] [Related]
7. Two coupled, driven Ising spin systems working as an engine. Basu D; Nandi J; Jayannavar AM; Marathe R Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic feature of a Brownian heat engine operating between two heat baths. Asfaw M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012143. PubMed ID: 24580208 [TBL] [Abstract][Full Text] [Related]
9. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine. Ma YH Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771 [TBL] [Abstract][Full Text] [Related]
10. Relativistic quantum heat engine from uncertainty relation standpoint. Chattopadhyay P; Paul G Sci Rep; 2019 Nov; 9(1):16967. PubMed ID: 31740692 [TBL] [Abstract][Full Text] [Related]
11. Efficiency of a microscopic heat engine subjected to stochastic resetting. Lahiri S; Gupta S Phys Rev E; 2024 Jan; 109(1-1):014129. PubMed ID: 38366425 [TBL] [Abstract][Full Text] [Related]
12. Performance of discrete heat engines and heat pumps in finite time. Feldmann T; Kosloff R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4774-90. PubMed ID: 11031518 [TBL] [Abstract][Full Text] [Related]
13. Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power. Contreras-Vergara O; Sánchez-Salas N; Valencia-Ortega G; Jiménez-Aquino JI Phys Rev E; 2023 Jul; 108(1-1):014123. PubMed ID: 37583186 [TBL] [Abstract][Full Text] [Related]
15. Cycling Tames Power Fluctuations near Optimum Efficiency. Holubec V; Ryabov A Phys Rev Lett; 2018 Sep; 121(12):120601. PubMed ID: 30296120 [TBL] [Abstract][Full Text] [Related]
16. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748 [TBL] [Abstract][Full Text] [Related]
17. Optimization of an active heat engine. Gronchi G; Puglisi A Phys Rev E; 2021 May; 103(5-1):052134. PubMed ID: 34134299 [TBL] [Abstract][Full Text] [Related]
18. Collective effects on the performance and stability of quantum heat engines. Souza LDS; Manzano G; Fazio R; Iemini F Phys Rev E; 2022 Jul; 106(1-1):014143. PubMed ID: 35974546 [TBL] [Abstract][Full Text] [Related]
19. A quantum heat engine driven by atomic collisions. Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327 [TBL] [Abstract][Full Text] [Related]
20. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]