These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine. Oh Y; Baek Y Phys Rev E; 2023 Aug; 108(2-1):024602. PubMed ID: 37723679 [TBL] [Abstract][Full Text] [Related]
24. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194 [TBL] [Abstract][Full Text] [Related]
25. Work extremum principle: structure and function of quantum heat engines. Allahverdyan AE; Johal RS; Mahler G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589 [TBL] [Abstract][Full Text] [Related]
27. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
28. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Liu P; Shu G; Tian H; Wang X Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamics of a minimal interacting heat engine: Comparison between engine designs. Hawthorne F; Cleuren B; Fiore CE Phys Rev E; 2024 Jun; 109(6-1):064120. PubMed ID: 39020975 [TBL] [Abstract][Full Text] [Related]
30. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. Klatzow J; Becker JN; Ledingham PM; Weinzetl C; Kaczmarek KT; Saunders DJ; Nunn J; Walmsley IA; Uzdin R; Poem E Phys Rev Lett; 2019 Mar; 122(11):110601. PubMed ID: 30951320 [TBL] [Abstract][Full Text] [Related]
31. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Wang J; He J; Ma Y Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038 [TBL] [Abstract][Full Text] [Related]
32. Unified approach to stochastic thermodynamics: Application to a quantum heat engine. Das J; Biswas LRR; Bag BC Phys Rev E; 2020 Oct; 102(4-1):042138. PubMed ID: 33212624 [TBL] [Abstract][Full Text] [Related]
34. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847 [TBL] [Abstract][Full Text] [Related]
35. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath. Abasabadi SH; Mirafzali SY; Baghshahi HR Sci Rep; 2023 Jun; 13(1):10522. PubMed ID: 37386051 [TBL] [Abstract][Full Text] [Related]
36. Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity. Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052148. PubMed ID: 25353780 [TBL] [Abstract][Full Text] [Related]
37. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines. Haseli Y Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284 [TBL] [Abstract][Full Text] [Related]
39. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]