These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32289907)

  • 1. Separation of dense colloidal suspensions in narrow channels: A stochastic model.
    Humenyuk YA; Kotrla M; Netočný K; Slanina F
    Phys Rev E; 2020 Mar; 101(3-1):032608. PubMed ID: 32289907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic ratcheting of spherical particles in well/channel microfluidic devices: Making particles move against the net field.
    Wang H; de Haan HW; Slater GW
    Electrophoresis; 2020 Apr; 41(7-8):621-629. PubMed ID: 31845347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation.
    Ai BQ; Wu JC
    J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic approximations for driven dense colloidal mixtures in narrow pores.
    Slanina F; Kotrla M
    Phys Rev E; 2023 Jun; 107(6-1):064606. PubMed ID: 37464715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic splitter for particle separation.
    Reguera D; Luque A; Burada PS; Schmid G; Rubí JM; Hänggi P
    Phys Rev Lett; 2012 Jan; 108(2):020604. PubMed ID: 22324667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratchet effect in an asymmetric two-dimensional system of Janus particles.
    Kalinay P; Slanina F
    Phys Rev E; 2023 Jul; 108(1-1):014606. PubMed ID: 37583160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle Surface Roughness Improves Colloidal Stability of Pressurized Pharmaceutical Suspensions.
    Wang H; Nobes DS; Vehring R
    Pharm Res; 2019 Jan; 36(3):43. PubMed ID: 30701324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-range and long-range correlations in driven dense colloidal mixtures in narrow pores.
    Slanina F; Kotrla M; Netočný K
    Phys Rev E; 2022 Jul; 106(1-1):014610. PubMed ID: 35974637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice-Boltzmann simulations of repulsive particle-particle and particle-wall interactions: coughing and choking.
    Başağaoğlu H; Succi S
    J Chem Phys; 2010 Apr; 132(13):134111. PubMed ID: 20387925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic transport of interacting particles in periodically driven ratchets.
    Savel'ev S; Marchesoni F; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061107. PubMed ID: 15697341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interacting particles in a periodically moving potential: traveling wave and transport.
    Chatterjee R; Chatterjee S; Pradhan P; Manna SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022138. PubMed ID: 25353453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous dielectrophoretic size-based particle sorting.
    Kralj JG; Lis MT; Schmidt MA; Jensen KF
    Anal Chem; 2006 Jul; 78(14):5019-25. PubMed ID: 16841925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels.
    Yang X; Liu C; Li Y; Marchesoni F; Hänggi P; Zhang HP
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9564-9569. PubMed ID: 28831004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropic transport of finite size particles.
    Riefler W; Schmid G; Burada PS; Hänggi P
    J Phys Condens Matter; 2010 Nov; 22(45):454109. PubMed ID: 21339597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dichotomic ratchet in a two-dimensional corrugated channel.
    Kalinay P; Slanina F
    Phys Rev E; 2021 Dec; 104(6-1):064115. PubMed ID: 35030943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the performance of the entropic splitter for particle separation.
    Motz T; Schmid G; Hänggi P; Reguera D; Rubí JM
    J Chem Phys; 2014 Aug; 141(7):074104. PubMed ID: 25149772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratchet effect for two-dimensional nanoparticle motion in a corrugated oscillating channel.
    Radtke M; Netz RR
    Eur Phys J E Soft Matter; 2016 Nov; 39(11):116. PubMed ID: 27896498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of nanoparticles by flow past a patterned substrate.
    Zhang R; Koplik J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026314. PubMed ID: 22463324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-passage times in conical varying-width channels biased by a transverse gravitational force: Comparison of analytical and numerical results.
    Pompa-García I; Castilla R; Metzler R; Dagdug L
    Phys Rev E; 2022 Dec; 106(6-1):064137. PubMed ID: 36671151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.