These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32289913)

  • 21. Possible relations between supercooled and glassy confined water and amorphous bulk ice.
    Swenson J
    Phys Chem Chem Phys; 2018 Dec; 20(48):30095-30103. PubMed ID: 30511075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Evidence of Void-Induced Structural Relaxations in Colloidal Glass Formers.
    Yip CT; Isobe M; Chan CH; Ren S; Wong KP; Huo Q; Lee CS; Tsang YH; Han Y; Lam CH
    Phys Rev Lett; 2020 Dec; 125(25):258001. PubMed ID: 33416386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growing point-to-set length scales in Lennard-Jones glass-forming liquids.
    Li YW; Xu WS; Sun ZY
    J Chem Phys; 2014 Mar; 140(12):124502. PubMed ID: 24697454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media.
    Kim K; Miyazaki K; Saito S
    J Phys Condens Matter; 2011 Jun; 23(23):234123. PubMed ID: 21613691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow Water Dynamics near a Glass Transition or a Solid Interface: A Common Rationale.
    Klameth F; Vogel M
    J Phys Chem Lett; 2015 Nov; 6(21):4385-9. PubMed ID: 26722975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.
    Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ
    J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films.
    Glor EC; Angrand GV; Fakhraai Z
    J Chem Phys; 2017 May; 146(20):203330. PubMed ID: 28571332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films.
    Hanakata PZ; Pazmiño Betancourt BA; Douglas JF; Starr FW
    J Chem Phys; 2015 Jun; 142(23):234907. PubMed ID: 26093579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slippage and nanorheology of thin liquid polymer films.
    Bäumchen O; Fetzer R; Klos M; Lessel M; Marquant L; Hähl H; Jacobs K
    J Phys Condens Matter; 2012 Aug; 24(32):325102, 1-17. PubMed ID: 22647885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing.
    Uhl M; Fischer JKH; Sippel P; Bunzen H; Lunkenheimer P; Volkmer D; Loidl A
    J Chem Phys; 2019 Jan; 150(2):024504. PubMed ID: 30646699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glassy boundary layers vs enhanced mobility in capped polymer films.
    Batistakis C; Michels MA; Lyulin AV
    J Chem Phys; 2013 Jul; 139(2):024906. PubMed ID: 23862964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative heterogeneous facilitation: multiple glassy states and glass-glass transition.
    Sellitto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):030502. PubMed ID: 23030856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crossover to surface flow in supercooled unentangled polymer films.
    Lam CH; Tsui OK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042604. PubMed ID: 24229203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay.
    Elamin K; Björklund J; Nyhlén F; Yttergren M; Mårtensson L; Swenson J
    J Chem Phys; 2014 Jul; 141(3):034505. PubMed ID: 25053324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural relaxation of polymer glasses at surfaces, interfaces, and in between.
    Priestley RD; Ellison CJ; Broadbelt LJ; Torkelson JM
    Science; 2005 Jul; 309(5733):456-9. PubMed ID: 16020732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-particle dynamics near the glass transition of a metallic glass.
    Lü YJ; Wang WH
    Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation of fragility of supercooled liquids with elastic properties of glasses.
    Novikov VN; Ding Y; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061501. PubMed ID: 16089737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of changes of intermolecular coupling on glass transition dynamics in polymer thin films and glass-formers confined in nanometer pores.
    Ngai KL
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):93-100. PubMed ID: 15007685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature.
    Karmakar S; Dasgupta C; Sastry S
    Phys Rev Lett; 2016 Feb; 116(8):085701. PubMed ID: 26967425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.