These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Interfaces of semi-infinite smectic liquid crystals and equations of state of infinite smectic stacks of semiflexible manifolds. Gao L; Golubović L Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021708. PubMed ID: 12636701 [TBL] [Abstract][Full Text] [Related]
6. Self-organized arrays of dislocations in thin smectic liquid crystal films. Coursault D; Zappone B; Coati A; Boulaoued A; Pelliser L; Limagne D; Boudet N; Ibrahim BH; de Martino A; Alba M; Goldmann M; Garreau Y; Gallas B; Lacaze E Soft Matter; 2016 Jan; 12(3):678-88. PubMed ID: 26565648 [TBL] [Abstract][Full Text] [Related]
7. Modeling smectic layers in confined geometries: order parameter and defects. Pevnyi MY; Selinger JV; Sluckin TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032507. PubMed ID: 25314465 [TBL] [Abstract][Full Text] [Related]
9. Temperature dependence of the nonlinear optical response of smectic liquid crystals containing gold nanorods. Silva RS; de Melo PB; Omena L; Nunes AM; da Silva MGA; Meneghetti MR; de Oliveira IN Phys Rev E; 2017 Dec; 96(6-1):062703. PubMed ID: 29347296 [TBL] [Abstract][Full Text] [Related]
10. Theoretical model of the transition between C1 and C2 chevron structures in smectic liquid crystals. Diaz A; Mottram NJ; McKay G Eur Phys J E Soft Matter; 2005 Oct; 18(2):231-7. PubMed ID: 16237490 [TBL] [Abstract][Full Text] [Related]
11. Neural-network approach to modeling liquid crystals in complex confinement. Santos-Silva T; Teixeira PI; Anquetil-Deck C; Cleaver DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053316. PubMed ID: 25353923 [TBL] [Abstract][Full Text] [Related]
12. Super-resolution stimulated emission depletion microscopy of director structures in liquid crystals. Tai JB; Smalyukh II Opt Lett; 2018 Oct; 43(20):5158-5161. PubMed ID: 30320844 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional flow and linear stability properties of smectic A liquid crystals. Snow BC; Stewart IW J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33721851 [TBL] [Abstract][Full Text] [Related]
14. Role of surface anchoring and geometric confinement on focal conic textures in smectic-A liquid crystals. Shojaei-Zadeh S; Anna SL Langmuir; 2006 Nov; 22(24):9986-93. PubMed ID: 17106990 [TBL] [Abstract][Full Text] [Related]
15. Generalized Langevin-Debye model of the field dependence of tilt, birefringence, and polarization current near the de Vries smectic-A* to smectic-C* liquid crystal phase transition. Shen Y; Wang L; Shao R; Gong T; Zhu C; Yang H; Maclennan JE; Walba DM; Clark NA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062504. PubMed ID: 24483465 [TBL] [Abstract][Full Text] [Related]
16. Transition kinetics of defect patterns in confined two-dimensional smectic liquid crystals. Zhang XJ; Sun YW; Li ZW; Sun ZY Phys Rev E; 2021 Oct; 104(4-1):044704. PubMed ID: 34781539 [TBL] [Abstract][Full Text] [Related]
17. Shear flow in smectic A liquid crystals. Stewart IW; Stewart F J Phys Condens Matter; 2009 Nov; 21(46):465101. PubMed ID: 21715899 [TBL] [Abstract][Full Text] [Related]
18. Molecular simulation of chevrons in confined smectic liquid crystals. Webster RE; Mottram NJ; Cleaver DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021706. PubMed ID: 14524992 [TBL] [Abstract][Full Text] [Related]