These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32289946)
1. Cyclization in bipartite random graphs. Lushnikov AA Phys Rev E; 2020 Mar; 101(3-1):032306. PubMed ID: 32289946 [TBL] [Abstract][Full Text] [Related]
2. Exactly solvable model of a coalescing random graph. Lushnikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022119. PubMed ID: 25768470 [TBL] [Abstract][Full Text] [Related]
3. Source-enhanced coalescence of trees in a random forest. Lushnikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022135. PubMed ID: 26382371 [TBL] [Abstract][Full Text] [Related]
4. Are randomly grown graphs really random? Callaway DS; Hopcroft JE; Kleinberg JM; Newman ME; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041902. PubMed ID: 11690047 [TBL] [Abstract][Full Text] [Related]
6. Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs. Onoue Y; Kukimoto N; Sakamoto N; Koyamada K IEEE Trans Vis Comput Graph; 2016 Jun; 22(6):1652-1661. PubMed ID: 26955033 [TBL] [Abstract][Full Text] [Related]
8. Bond topology of chain, ribbon and tube silicates. Part I. Graph-theory generation of infinite one-dimensional arrangements of (TO Day MC; Hawthorne FC Acta Crystallogr A Found Adv; 2022 May; 78(Pt 3):212-233. PubMed ID: 35502713 [TBL] [Abstract][Full Text] [Related]
9. Graph Matching between Bipartite and Unipartite Networks: to Collapse, or not to Collapse, that is the Question. Arroyo J; Priebe CE; Lyzinski V IEEE Trans Netw Sci Eng; 2021; 8(4):3019-3033. PubMed ID: 35224127 [TBL] [Abstract][Full Text] [Related]
10. Robustness of random graphs based on graph spectra. Wu J; Barahona M; Tan YJ; Deng HZ Chaos; 2012 Dec; 22(4):043101. PubMed ID: 23278036 [TBL] [Abstract][Full Text] [Related]
11. Generation of complex bipartite graphs by using a preferential rewiring process. Ohkubo J; Tanaka K; Horiguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036120. PubMed ID: 16241528 [TBL] [Abstract][Full Text] [Related]
12. Co-Clustering on Bipartite Graphs for Robust Model Fitting. Lin S; Luo H; Yan Y; Xiao G; Wang H IEEE Trans Image Process; 2022; 31():6605-6620. PubMed ID: 36256709 [TBL] [Abstract][Full Text] [Related]
13. General and exact approach to percolation on random graphs. Allard A; Hébert-Dufresne L; Young JG; Dubé LJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062807. PubMed ID: 26764744 [TBL] [Abstract][Full Text] [Related]
14. Random graphs with arbitrary degree distributions and their applications. Newman ME; Strogatz SH; Watts DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026118. PubMed ID: 11497662 [TBL] [Abstract][Full Text] [Related]
15. Random geometric graph description of connectedness percolation in rod systems. Chatterjee AP; Grimaldi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032121. PubMed ID: 26465440 [TBL] [Abstract][Full Text] [Related]
16. Simple graph models of information spread in finite populations. Voorhees B; Ryder B R Soc Open Sci; 2015 May; 2(5):150028. PubMed ID: 26064661 [TBL] [Abstract][Full Text] [Related]
17. On the centrality of vertices of molecular graphs. Randić M; Novič M; Vračko M; Plavšić D J Comput Chem; 2013 Nov; 34(29):2514-23. PubMed ID: 23955387 [TBL] [Abstract][Full Text] [Related]
18. Dynamical random graphs with memory. Turova TS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066102. PubMed ID: 12188778 [TBL] [Abstract][Full Text] [Related]
19. Connectivity of Triangulation Flip Graphs in the Plane. Wagner U; Welzl E Discrete Comput Geom; 2022; 68(4):1227-1284. PubMed ID: 36466128 [TBL] [Abstract][Full Text] [Related]
20. A Linear-Time Algorithm for 4-Coloring Some Classes of Planar Graphs. Liang Z; Wei H Comput Intell Neurosci; 2021; 2021():7667656. PubMed ID: 34650606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]