These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 32289959)
1. Laminar chaos in experiments and nonlinear delayed Langevin equations: A time series analysis toolbox for the detection of laminar chaos. Müller-Bender D; Otto A; Radons G; Hart JD; Roy R Phys Rev E; 2020 Mar; 101(3-1):032213. PubMed ID: 32289959 [TBL] [Abstract][Full Text] [Related]
2. Laminar Chaos in Experiments: Nonlinear Systems with Time-Varying Delays and Noise. Hart JD; Roy R; Müller-Bender D; Otto A; Radons G Phys Rev Lett; 2019 Oct; 123(15):154101. PubMed ID: 31702295 [TBL] [Abstract][Full Text] [Related]
3. Laminar chaos in systems with quasiperiodic delay. Müller-Bender D; Radons G Phys Rev E; 2023 Jan; 107(1-1):014205. PubMed ID: 36797923 [TBL] [Abstract][Full Text] [Related]
4. Resonant Doppler effect in systems with variable delay. Müller-Bender D; Otto A; Radons G Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180119. PubMed ID: 31329067 [TBL] [Abstract][Full Text] [Related]
6. Laminar chaos in nonlinear electronic circuits with delay clock modulation. Jüngling T; Stemler T; Small M Phys Rev E; 2020 Jan; 101(1-1):012215. PubMed ID: 32069600 [TBL] [Abstract][Full Text] [Related]
7. From dynamical systems with time-varying delay to circle maps and Koopman operators. Müller D; Otto A; Radons G Phys Rev E; 2017 Jun; 95(6-1):062214. PubMed ID: 28709184 [TBL] [Abstract][Full Text] [Related]
9. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space. Zou Y; Donner RV; Thiel M; Kurths J Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601 [TBL] [Abstract][Full Text] [Related]
10. Chaos in an imperfectly premixed model combustor. Kabiraj L; Saurabh A; Karimi N; Sailor A; Mastorakos E; Dowling AP; Paschereit CO Chaos; 2015 Feb; 25(2):023101. PubMed ID: 25725637 [TBL] [Abstract][Full Text] [Related]
11. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems. Rempel EL; Chian AC Phys Rev Lett; 2007 Jan; 98(1):014101. PubMed ID: 17358476 [TBL] [Abstract][Full Text] [Related]
12. Time Series Analysis of the Lecca P; Mura I; Re A; Barker GC; Ihekwaba AE Front Microbiol; 2016; 7():1760. PubMed ID: 27872618 [TBL] [Abstract][Full Text] [Related]
14. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. Zaheer MH; Rehan M; Mustafa G; Ashraf M ISA Trans; 2014 Nov; 53(6):1716-30. PubMed ID: 25440951 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear stochastic modelling with Langevin regression. Callaham JL; Loiseau JC; Rigas G; Brunton SL Proc Math Phys Eng Sci; 2021 Jun; 477(2250):20210092. PubMed ID: 35153564 [TBL] [Abstract][Full Text] [Related]
16. Edge of chaos in a parallel shear flow. Skufca JD; Yorke JA; Eckhardt B Phys Rev Lett; 2006 May; 96(17):174101. PubMed ID: 16712300 [TBL] [Abstract][Full Text] [Related]
17. Communication with chemical chaos in the presence of noise. Dolnik M; Bollt EM Chaos; 1998 Sep; 8(3):702-710. PubMed ID: 12779775 [TBL] [Abstract][Full Text] [Related]
18. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory. Kaart S; Schouten JC; van den Bleek CM Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5303-12. PubMed ID: 11969490 [TBL] [Abstract][Full Text] [Related]
19. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
20. Routes to spatiotemporal chaos in the rheology of nematogenic fluids. Das M; Chakrabarti B; Dasgupta C; Ramaswamy S; Sood AK Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021707. PubMed ID: 15783340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]