BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32290013)

  • 1. Native-state fingerprint on the ubiquitin translocation across a nanopore.
    Cecconi F; Chinappi M
    Phys Rev E; 2020 Mar; 101(3-1):032401. PubMed ID: 32290013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unfoldase-mediated protein translocation through an α-hemolysin nanopore.
    Nivala J; Marks DB; Akeson M
    Nat Biotechnol; 2013 Mar; 31(3):247-50. PubMed ID: 23376966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A statistical model for translocation of structured polypeptide chains through nanopores.
    Ammenti A; Cecconi F; Marini Bettolo Marconi U; Vulpiani A
    J Phys Chem B; 2009 Jul; 113(30):10348-56. PubMed ID: 19572676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistep protein unfolding during nanopore translocation.
    Rodriguez-Larrea D; Bayley H
    Nat Nanotechnol; 2013 Apr; 8(4):288-95. PubMed ID: 23474543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of DNA within a nanopore: arginine-phosphate tethering and a binding/sliding mechanism for translocation.
    Bond PJ; Guy AT; Heron AJ; Bayley H; Khalid S
    Biochemistry; 2011 May; 50(18):3777-83. PubMed ID: 21428458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from
    Wilson JW; Rolland AD; Klausen GM; Prell JS
    Anal Chem; 2019 Aug; 91(15):10204-10211. PubMed ID: 31282652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein co-translocational unfolding depends on the direction of pulling.
    Rodriguez-Larrea D; Bayley H
    Nat Commun; 2014 Sep; 5():4841. PubMed ID: 25197784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-energy landscapes of membrane co-translocational protein unfolding.
    Rosen CB; Bayley H; Rodriguez-Larrea D
    Commun Biol; 2020 Apr; 3(1):160. PubMed ID: 32246057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligonucleotide-Directed Protein Threading Through a Rigid Nanopore.
    Celaya G; Rodriguez-Larrea D
    Methods Mol Biol; 2021; 2186():135-144. PubMed ID: 32918734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP.
    Nivala J; Mulroney L; Luan Q; Abu-Shumays R; Akeson M
    Methods Mol Biol; 2021; 2186():145-155. PubMed ID: 32918735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates.
    Feng J; Martin-Baniandres P; Booth MJ; Veggiani G; Howarth M; Bayley H; Rodriguez-Larrea D
    Commun Biol; 2020 Apr; 3(1):159. PubMed ID: 32246060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations.
    Di Muccio G; Rossini AE; Di Marino D; Zollo G; Chinappi M
    Sci Rep; 2019 Apr; 9(1):6440. PubMed ID: 31015503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR studies on binding sites and aggregation-disassociation of fluorinated surfactant sodium perfluorooctanoate on protein ubiquitin.
    Lu RC; Guo XR; Jin C; Xiao JX
    Biochim Biophys Acta; 2009 Feb; 1790(2):134-40. PubMed ID: 19027051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of denaturation in maltose binding protein translocation dynamics.
    Bacci M; Chinappi M; Casciola CM; Cecconi F
    J Phys Chem B; 2012 Apr; 116(14):4255-62. PubMed ID: 22429088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.