These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32290023)

  • 1. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses.
    Cho HW; Mugnai ML; Kirkpatrick TR; Thirumalai D
    Phys Rev E; 2020 Mar; 101(3-1):032605. PubMed ID: 32290023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manifestation of random first-order transition theory in Wigner glasses.
    Kang H; Kirkpatrick TR; Thirumalai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042308. PubMed ID: 24229173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft colloids make strong glasses.
    Mattsson J; Wyss HM; Fernandez-Nieves A; Miyazaki K; Hu Z; Reichman DR; Weitz DA
    Nature; 2009 Nov; 462(7269):83-6. PubMed ID: 19890327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragility and Strength in Nanoparticle Glasses.
    van der Scheer P; van de Laar T; van der Gucht J; Vlassopoulos D; Sprakel J
    ACS Nano; 2017 Jul; 11(7):6755-6763. PubMed ID: 28658568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the glass transition of fragile soft colloidal suspensions.
    Saha D; Joshi YM; Bandyopadhyay R
    J Chem Phys; 2015 Dec; 143(21):214901. PubMed ID: 26646885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correlation between fragility, density, and atomic interaction in glass-forming liquids.
    Wang L; Guan P; Wang WH
    J Chem Phys; 2016 Jul; 145(3):034505. PubMed ID: 27448894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding charged vesicle suspensions as Wigner glasses: dynamical aspects.
    Porpora G; Rusciano F; Guida V; Greco F; Pastore R
    J Phys Condens Matter; 2021 Mar; 33(10):104001. PubMed ID: 33246318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
    Seekell Iii RP; Sarangapani PS; Zhang Z; Zhu Y
    Soft Matter; 2015 Jul; 11(27):5485-91. PubMed ID: 26061613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding, predicting, and tuning the fragility of vitrimeric polymers.
    Ciarella S; Biezemans RA; Janssen LMC
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25013-25022. PubMed ID: 31767770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The descent into glass formation in polymer fluids.
    Freed KF
    Acc Chem Res; 2011 Mar; 44(3):194-203. PubMed ID: 21207948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the dynamics of glass-forming liquids with random pinning within the random first order transition theory.
    Chakrabarty S; Das R; Karmakar S; Dasgupta C
    J Chem Phys; 2016 Jul; 145(3):034507. PubMed ID: 27448896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions.
    Peng X; McKenna GB
    Phys Rev E; 2016 Apr; 93():042603. PubMed ID: 27176348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure ordering and glass transition in size-asymmetric ternary mixtures of hard spheres: Variation from fragile to strong glasses.
    Singh A; Singh Y
    Phys Rev E; 2023 Jan; 107(1-1):014119. PubMed ID: 36797956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallizing hard-sphere glasses by doping with active particles.
    Ni R; Cohen Stuart MA; Dijkstra M; Bolhuis PG
    Soft Matter; 2014 Sep; 10(35):6609-13. PubMed ID: 25079244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.
    Starr FW; Douglas JF; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A541. PubMed ID: 23556792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A random first-order transition theory for an active glass.
    Nandi SK; Mandal R; Bhuyan PJ; Dasgupta C; Rao M; Gov NS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7688-7693. PubMed ID: 29987043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion Decoupling in Binary Colloidal Systems Observed with Contrast Variation Multispeckle Diffusing Wave Spectroscopy.
    Higler R; Frijns RAM; Sprakel J
    Langmuir; 2019 Apr; 35(17):5793-5801. PubMed ID: 30955341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: aging and gelation.
    Tanaka H; Jabbari-Farouji S; Meunier J; Bonn D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021402. PubMed ID: 15783324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary colloidal glasses: linear viscoelasticity and its link to the microscopic structure and dynamics.
    Sentjabrskaja T; Jacob AR; Egelhaaf SU; Petekidis G; Voigtmann T; Laurati M
    Soft Matter; 2019 Mar; 15(10):2232-2244. PubMed ID: 30794267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. II. Barriers, relaxation, fragility, kinetic vitrification, and universality.
    Tripathy M; Schweizer KS
    J Chem Phys; 2009 Jun; 130(24):244907. PubMed ID: 19566181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.