BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32290080)

  • 1. Triacontanol Promotes the Fruit Development and Retards Fruit Senescence in Strawberry: A Transcriptome Analysis.
    Pang Q; Chen X; Lv J; Li T; Fang J; Jia H
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32290080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis provides insight into defensive strategies in response to continuous cropping in strawberry (Fragaria × ananassa Duch.) plants.
    Chen P; Li HQ; Li XY; Zhou XH; Zhang XX; Zhang AS; Liu QZ
    BMC Plant Biol; 2022 Oct; 22(1):476. PubMed ID: 36203126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling by RNA-Seq reveals differentially expressed genes related to fruit development and ripening characteristics in strawberries (
    Hu P; Li G; Zhao X; Zhao F; Li L; Zhou H
    PeerJ; 2018; 6():e4976. PubMed ID: 29967718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined transcriptomic and metabolomic analysis reveals a role for adenosine triphosphate-binding cassette transporters and cell wall remodeling in response to salt stress in strawberry.
    Li S; Chang L; Sun R; Dong J; Zhong C; Gao Y; Zhang H; Wei L; Wei Y; Zhang Y; Wang G; Sun J
    Front Plant Sci; 2022; 13():996765. PubMed ID: 36147238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of strawberry fruit in response to exogenous arginine.
    Lv J; Pang Q; Chen X; Li T; Fang J; Lin S; Jia H
    Planta; 2020 Oct; 252(5):82. PubMed ID: 33040169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.
    Chen J; Mao L; Lu W; Ying T; Luo Z
    Planta; 2016 Jan; 243(1):183-97. PubMed ID: 26373937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanded transcriptomic view of strawberry fruit ripening through meta-analysis.
    Yi G; Shin H; Min K; Lee EJ
    PLoS One; 2021; 16(6):e0252685. PubMed ID: 34061906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit.
    Kadomura-Ishikawa Y; Miyawaki K; Takahashi A; Masuda T; Noji S
    Planta; 2015 Apr; 241(4):953-65. PubMed ID: 25534946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome and metabolome analyses of two strawberry cultivars with different storability.
    Min K; Yi G; Lee JG; Kim HS; Hong Y; Choi JH; Lim S; Lee EJ
    PLoS One; 2020; 15(12):e0242556. PubMed ID: 33264316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Transcriptome Profiling Analysis of Red- and White-Fleshed Strawberry (Fragaria�ananassa) Provides New Insight into the Regulation of the Anthocyanin Pathway.
    Lin Y; Jiang L; Chen Q; Li Y; Zhang Y; Luo Y; Zhang Y; Sun B; Wang X; Tang H
    Plant Cell Physiol; 2018 Sep; 59(9):1844-1859. PubMed ID: 29800352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome and Biochemical Analysis Jointly Reveal the Effects of
    Yu YY; Dou GX; Sun XX; Chen L; Zheng Y; Xiao HM; Wang YP; Li HY; Guo JH; Jiang CH
    Front Plant Sci; 2021; 12():700446. PubMed ID: 34434207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa).
    Wang S; Song M; Guo J; Huang Y; Zhang F; Xu C; Xiao Y; Zhang L
    Plant Biotechnol J; 2018 Mar; 16(3):737-748. PubMed ID: 28851008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complexity of the
    Yuan H; Yu H; Huang T; Shen X; Xia J; Pang F; Wang J; Zhao M
    Hortic Res; 2019; 6():46. PubMed ID: 30962939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV).
    Chen J; Zhang H; Feng M; Zuo D; Hu Y; Jiang T
    Virol J; 2016 Jul; 13():128. PubMed ID: 27411713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation.
    Zhang J; Wang X; Yu O; Tang J; Gu X; Wan X; Fang C
    J Exp Bot; 2011 Jan; 62(3):1103-18. PubMed ID: 21041374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNAseq, transcriptome analysis and identification of DEGs involved in development and ripening of
    Gaete-Eastman C; Stappung Y; Molinett S; Urbina D; Moya-Leon MA; Herrera R
    Front Plant Sci; 2022; 13():976901. PubMed ID: 36204060
    [No Abstract]   [Full Text] [Related]  

  • 18. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening.
    Garrido-Bigotes A; Figueroa NE; Figueroa PM; Figueroa CR
    PLoS One; 2018; 13(5):e0197118. PubMed ID: 29746533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit.
    Onik JC; Hu X; Lin Q; Wang Z
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30065188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.