BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32290171)

  • 1. CD44 Can Compensate for IgSF11 Deficiency by Associating with the Scaffold Protein PSD-95 during Osteoclast Differentiation.
    Kim H; Takegahara N; Walsh MC; Choi Y
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95.
    Kim H; Takegahara N; Walsh MC; Middleton SA; Yu J; Shirakawa J; Ueda J; Fujihara Y; Ikawa M; Ishii M; Kim J; Choi Y
    Bone Res; 2020; 8():5. PubMed ID: 32047704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IgSF11-mediated phosphorylation of pyruvate kinase M2 regulates osteoclast differentiation and prevents pathological bone loss.
    Kim H; Takegahara N; Choi Y
    Bone Res; 2023 Mar; 11(1):17. PubMed ID: 36928396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity.
    Jang S; Oh D; Lee Y; Hosy E; Shin H; van Riesen C; Whitcomb D; Warburton JM; Jo J; Kim D; Kim SG; Um SM; Kwon SK; Kim MH; Roh JD; Woo J; Jun H; Lee D; Mah W; Kim H; Kaang BK; Cho K; Rhee JS; Choquet D; Kim E
    Nat Neurosci; 2016 Jan; 19(1):84-93. PubMed ID: 26595655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of CD44 deficiency on in vitro and in vivo osteoclast formation.
    de Vries TJ; Schoenmaker T; Beertsen W; van der Neut R; Everts V
    J Cell Biochem; 2005 Apr; 94(5):954-66. PubMed ID: 15578568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-κB ligand through Rho kinase.
    Ariyoshi W; Okinaga T; Knudson CB; Knudson W; Nishihara T
    Osteoarthritis Cartilage; 2014 Jan; 22(1):111-20. PubMed ID: 24185105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression.
    Chellaiah MA; Kizer N; Biswas R; Alvarez U; Strauss-Schoenberger J; Rifas L; Rittling SR; Denhardt DT; Hruska KA
    Mol Biol Cell; 2003 Jan; 14(1):173-89. PubMed ID: 12529435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts.
    Kim MH; Ryu SY; Choi JS; Min YK; Kim SH
    J Cell Physiol; 2009 Dec; 221(3):618-28. PubMed ID: 19653230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential anti-osteoporotic activity of low-molecular weight hyaluronan by attenuation of osteoclast cell differentiation and function in vitro.
    Lee CW; Seo JY; Choi JW; Lee J; Park JW; Lee JY; Hwang KY; Park YS; Park YI
    Biochem Biophys Res Commun; 2014 Jul; 449(4):438-43. PubMed ID: 24853804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling.
    Sondag GR; Mbimba TS; Moussa FM; Novak K; Yu B; Jaber FA; Abdelmagid SM; Geldenhuys WJ; Safadi FF
    Exp Mol Med; 2016 Sep; 48(9):e257. PubMed ID: 27585719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12.
    Kameda Y; Takahata M; Komatsu M; Mikuni S; Hatakeyama S; Shimizu T; Angata T; Kinjo M; Minami A; Iwasaki N
    J Bone Miner Res; 2013 Dec; 28(12):2463-75. PubMed ID: 23677868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand.
    Itoh K; Udagawa N; Katagiri T; Iemura S; Ueno N; Yasuda H; Higashio K; Quinn JM; Gillespie MT; Martin TJ; Suda T; Takahashi N
    Endocrinology; 2001 Aug; 142(8):3656-62. PubMed ID: 11459815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.
    Li Y; Zhong G; Sun W; Zhao C; Zhang P; Song J; Zhao D; Jin X; Li Q; Ling S; Li Y
    Sci Rep; 2015 Nov; 5():16124. PubMed ID: 26530337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4.
    Chang EJ; Kim HJ; Ha J; Kim HJ; Ryu J; Park KH; Kim UH; Lee ZH; Kim HM; Fisher DE; Kim HH
    J Cell Sci; 2007 Jan; 120(Pt 1):166-76. PubMed ID: 17164294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-kappaB-dependent effects on osteoclast formation in regenerating mammalian bone.
    Faucheux C; Horton MA; Price JS
    J Bone Miner Res; 2002 Mar; 17(3):455-64. PubMed ID: 11874237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation.
    Hiruma Y; Hirai T; Tsuda E
    Biochem Biophys Res Commun; 2011 Jun; 409(3):424-9. PubMed ID: 21586272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RANKL coordinates cell cycle withdrawal and differentiation in osteoclasts through the cyclin-dependent kinase inhibitors p27KIP1 and p21CIP1.
    Sankar U; Patel K; Rosol TJ; Ostrowski MC
    J Bone Miner Res; 2004 Aug; 19(8):1339-48. PubMed ID: 15231022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation.
    Ikeda F; Nishimura R; Matsubara T; Tanaka S; Inoue J; Reddy SV; Hata K; Yamashita K; Hiraga T; Watanabe T; Kukita T; Yoshioka K; Rao A; Yoneda T
    J Clin Invest; 2004 Aug; 114(4):475-84. PubMed ID: 15314684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transglutaminase 2 regulates osteoclast differentiation via a Blimp1-dependent pathway.
    Kim WS; Kim H; Jeong EM; Kim HJ; Lee ZH; Kim IG; Kim HH
    Sci Rep; 2017 Sep; 7(1):10626. PubMed ID: 28878266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cell-cell and cell-matrix interactions in bone destruction induced by metastatic MDA-MB-231 human breast cancer cells in nude mice.
    Nakamura H; Hiraga T; Ninomiya T; Hosoya A; Fujisaki N; Yoneda T; Ozawa H
    J Bone Miner Metab; 2008; 26(6):642-7. PubMed ID: 18979165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.