These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 32290197)
41. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan. Liang CP; Jang CS; Liang CW; Chen JS Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27886103 [TBL] [Abstract][Full Text] [Related]
42. Implementation and evaluation of different techniques to modify DRASTIC method for groundwater vulnerability assessment: a case study from Bouficha aquifer, Tunisia. Siarkos I; Arfaoui M; Tzoraki O; Zammouri M; Hamzaoui-Azaza F Environ Sci Pollut Res Int; 2023 Aug; 30(38):89459-89478. PubMed ID: 37453015 [TBL] [Abstract][Full Text] [Related]
43. Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Saravanan S; Pitchaikani S; Thambiraja M; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M Environ Monit Assess; 2022 Nov; 195(1):57. PubMed ID: 36326917 [TBL] [Abstract][Full Text] [Related]
44. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Barzegar R; Asghari Moghaddam A; Adamowski J; Nazemi AH Environ Sci Pollut Res Int; 2019 Mar; 26(8):8325-8339. PubMed ID: 30706265 [TBL] [Abstract][Full Text] [Related]
45. Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina. Lima ML; Romanelli A; Massone HE Environ Monit Assess; 2013 Jun; 185(6):5125-39. PubMed ID: 23054292 [TBL] [Abstract][Full Text] [Related]
46. Would delineation of nitrate vulnerable zones be improved by introducing a new parameter representing the risk associated with soil permeability in the Land Use-Intrinsic Vulnerability Procedure? Arauzo M; Valladolid M; Andries DM Sci Total Environ; 2022 Sep; 840():156654. PubMed ID: 35700776 [TBL] [Abstract][Full Text] [Related]
47. Application of Groundwater Vulnerability Overlay and Index Methods to the Jijel Plain Area (Algeria). Boufekane A; Saighi O Ground Water; 2018 Jan; 56(1):143-156. PubMed ID: 28833070 [TBL] [Abstract][Full Text] [Related]
48. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Busico G; Kazakis N; Cuoco E; Colombani N; Tedesco D; Voudouris K; Mastrocicco M Water Res; 2020 Mar; 171():115386. PubMed ID: 31865127 [TBL] [Abstract][Full Text] [Related]
49. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models. Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423 [TBL] [Abstract][Full Text] [Related]
50. Calibration of groundwater vulnerability mapping using the generalized reduced gradient method. Elçi A J Contam Hydrol; 2017 Dec; 207():39-49. PubMed ID: 29129334 [TBL] [Abstract][Full Text] [Related]
51. Enhancing groundwater vulnerability assessment for improved environmental management: addressing a critical environmental concern. Abduljaleel Y; Amiri M; Amen EM; Salem A; Ali ZF; Awd A; Lóczy D; Ghzal M Environ Sci Pollut Res Int; 2024 Mar; 31(13):19185-19205. PubMed ID: 38358629 [TBL] [Abstract][Full Text] [Related]
52. Multi-criteria evaluation of hydro-geological and anthropogenic parameters for the groundwater vulnerability assessment. Kumar P; Thakur PK; Bansod BK; Debnath SK Environ Monit Assess; 2017 Oct; 189(11):564. PubMed ID: 29035418 [TBL] [Abstract][Full Text] [Related]
53. Geostatistical estimates of groundwater nitrate-nitrogen concentrations with spatial auxiliary information on DRASTIC-LU-based aquifer contamination vulnerability. Jang CS Environ Sci Pollut Res Int; 2023 Jul; 30(33):81113-81130. PubMed ID: 37314554 [TBL] [Abstract][Full Text] [Related]
54. A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Voutchkova DD; Schullehner J; Rasmussen P; Hansen B J Environ Manage; 2021 Jan; 277():111330. PubMed ID: 32971506 [TBL] [Abstract][Full Text] [Related]
55. Vulnerability Assessment of Farmland Groundwater Pollution around Traditional Industrial Parks Based on the Improved DRASTIC Model-A Case Study in Shifang City, Sichuan Province, China. Zhang Y; Qin H; An G; Huang T Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805257 [TBL] [Abstract][Full Text] [Related]
56. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Huan H; Wang J; Teng Y Sci Total Environ; 2012 Dec; 440():14-23. PubMed ID: 22974721 [TBL] [Abstract][Full Text] [Related]
57. Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination. Bera A; Mukhopadhyay BP; Chowdhury P; Ghosh A; Biswas S Ecotoxicol Environ Saf; 2021 May; 214():112085. PubMed ID: 33690007 [TBL] [Abstract][Full Text] [Related]
58. [Physical process based risk assessment of groundwater pollution in the mining area]. Sun FS; Cheng P; Zhang B Huan Jing Ke Xue; 2014 Apr; 35(4):1285-9. PubMed ID: 24946577 [TBL] [Abstract][Full Text] [Related]
59. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability. Ahn JJ; Kim YM; Yoo K; Park J; Oh KJ Environ Monit Assess; 2012 Nov; 184(11):6637-45. PubMed ID: 22124584 [TBL] [Abstract][Full Text] [Related]
60. Groundwater vulnerability assessment of nitrate pollution in the Ankang Basin: using an optimized DRASTIC-LY method. Hui T; Changlai X; Honggen X; Xiujuan L; Jianli Q; Longtan Q; Weilong Z; Hong Z J Water Health; 2023 Sep; 21(9):1177-1192. PubMed ID: 37756188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]