BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 32290224)

  • 1. How Computational Chemistry and Drug Delivery Techniques Can Support the Development of New Anticancer Drugs.
    Garofalo M; Grazioso G; Cavalli A; Sgrignani J
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32290224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity-bound antibody-drug conjugates.
    Nervig CS; Owen SC
    Nat Biomed Eng; 2019 Nov; 3(11):850-851. PubMed ID: 31686000
    [No Abstract]   [Full Text] [Related]  

  • 4. Overview on the current status on virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part II.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(6):1337-1358. PubMed ID: 28039691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Needs as a Starting Point for Different Strategies in Computational Drug Development.
    Portela C
    Drug Res (Stuttg); 2019 Aug; 69(8):458-466. PubMed ID: 30572350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expediting the Design, Discovery and Development of Anticancer Drugs using Computational Approaches.
    Basith S; Cui M; Macalino SJY; Choi S
    Curr Med Chem; 2017; 24(42):4753-4778. PubMed ID: 27593958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development.
    Hameed R; Khan A; Khan S; Perveen S
    Anticancer Agents Med Chem; 2019; 19(5):592-598. PubMed ID: 30306880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer Drug Discovery Process.
    Del Carmen Quintal Bojórquez N; Campos MRS
    Curr Cancer Drug Targets; 2023; 23(5):333-345. PubMed ID: 35792126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy.
    Olotu F; Adeniji E; Agoni C; Bjij I; Khan S; Elrashedy A; Soliman M
    Expert Opin Drug Discov; 2018 Oct; 13(10):903-918. PubMed ID: 30207185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone.
    Khan T; Ahmad R; Azad I; Raza S; Joshi S; Khan AR
    Comput Biol Chem; 2018 Aug; 75():178-195. PubMed ID: 29883916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review structure- and dynamics-based computational design of anticancer drugs.
    Lin JH
    Biopolymers; 2016 Jan; 105(1):2-9. PubMed ID: 26385494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Approach Towards Designing Metallogels From a Urea-Functionalized Pyridyl Dicarboxylate: Anti-inflammatory, Anticancer, and Drug Delivery.
    Sarkar K; Dastidar P
    Chem Asian J; 2019 Jan; 14(1):194-204. PubMed ID: 30358173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities.
    Lourenço AM; Ferreira LM; Branco PS
    Curr Pharm Des; 2012; 18(26):3979-4046. PubMed ID: 22632756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Modeling Studies on Some Important Anticancer Heterocycles: An Overview.
    Kale M; Sonwane G; Nawale R; Mourya V
    Curr Comput Aided Drug Des; 2018; 14(3):178-190. PubMed ID: 29564984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates.
    Xiao Z; Morris-Natschke SL; Lee KH
    Med Res Rev; 2016 Jan; 36(1):32-91. PubMed ID: 26359649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies on the development of small molecule anticancer drugs for targeted therapy.
    Lu YH; Gao XQ; Wu M; Zhang-Negrerie D; Gao Q
    Mini Rev Med Chem; 2011 Jun; 11(7):611-24. PubMed ID: 21699492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel metal-based anticancer drugs: a new challenge in drug delivery.
    Lainé AL; Passirani C
    Curr Opin Pharmacol; 2012 Aug; 12(4):420-6. PubMed ID: 22609113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances (2015-2016) in anticancer hybrids.
    Kerru N; Singh P; Koorbanally N; Raj R; Kumar V
    Eur J Med Chem; 2017 Dec; 142():179-212. PubMed ID: 28760313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Drug Design of Antineoplastic Agents Using 3D-QSAR, Cheminformatic, and Virtual Screening Approaches.
    Vucicevic J; Nikolic K; Mitchell JBO
    Curr Med Chem; 2019; 26(21):3874-3889. PubMed ID: 28707592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.