These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 32290633)

  • 1. Assessment of the Status of Patients with Parkinson's Disease Using Neural Networks and Mobile Phone Sensors.
    Shichkina Y; Stanevich E; Irishina Y
    Diagnostics (Basel); 2020 Apr; 10(4):. PubMed ID: 32290633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using reality mining to improve public health and medicine.
    Pentland A; Lazer D; Brewer D; Heibeck T
    Stud Health Technol Inform; 2009; 149():93-102. PubMed ID: 19745474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Framework for the Remote Detection of Parkinson'S Disease Using Smart-Phone Sensor Data.
    Prince J; de Vos M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3144-3147. PubMed ID: 30441061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PD_Manager: an mHealth platform for Parkinson's disease patient management.
    Tsiouris KM; Gatsios D; Rigas G; Miljkovic D; Koroušić Seljak B; Bohanec M; Arredondo MT; Antonini A; Konitsiotis S; Koutsouris DD; Fotiadis DI
    Healthc Technol Lett; 2017 Jun; 4(3):102-108. PubMed ID: 28706727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Development of Gait Classification Models for Five-Gaited Horses Based on Mobile Phone Sensors.
    Davíðsson HB; Rees T; Ólafsdóttir MR; Einarsson H
    Animals (Basel); 2023 Jan; 13(1):. PubMed ID: 36611791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of Parkinson's disease stages with a two-stage deep neural network.
    Pedrero-Sánchez JF; Belda-Lois JM; Serra-Añó P; Mollà-Casanova S; López-Pascual J
    Front Aging Neurosci; 2023; 15():1152917. PubMed ID: 37333459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating Vehicle Movement Direction from Smartphone Accelerometers Using Deep Neural Networks.
    Hernández Sánchez S; Fernández Pozo R; Hernández Gómez LA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor.
    Kostikis N; Hristu-Varsakelis D; Arnaoutoglou M; Kotsavasiloglou C
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1835-42. PubMed ID: 26302523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkinson's disease hand tremor detection system for mobile application.
    Fraiwan L; Khnouf R; Mashagbeh AR
    J Med Eng Technol; 2016; 40(3):127-34. PubMed ID: 26977823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Pulmonary Function from Phone Sensors.
    Cheng Q; Juen J; Bellam S; Fulara N; Close D; Silverstein JC; Schatz B
    Telemed J E Health; 2017 Nov; 23(11):913-919. PubMed ID: 28300524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mobile cloud-based Parkinson's disease assessment system for home-based monitoring.
    Pan D; Dhall R; Lieberman A; Petitti DB
    JMIR Mhealth Uhealth; 2015 Mar; 3(1):e29. PubMed ID: 25830687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson's disease: a systematic review.
    Hubble RP; Naughton GA; Silburn PA; Cole MH
    PLoS One; 2015; 10(4):e0123705. PubMed ID: 25894561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait Monitoring for Early Neurological Disorder Detection Using Sensors in a Smartphone: Validation and a Case Study of Parkinsonism.
    Raknim P; Lan KC
    Telemed J E Health; 2016 Jan; 22(1):75-81. PubMed ID: 26302109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Modeling of IoT Mobile Terminals on WiFi Environmental Impacts
    Sun Y; Chen J; Tang Y; Chen Y
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning Approach to Estimate Hip and Knee Joint Loading Using a Mobile Phone-Embedded IMU.
    De Brabandere A; Emmerzaal J; Timmermans A; Jonkers I; Vanwanseele B; Davis J
    Front Bioeng Biotechnol; 2020; 8():320. PubMed ID: 32351952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson's disease.
    Nancy Jane Y; Khanna Nehemiah H; Arputharaj K
    J Biomed Inform; 2016 Apr; 60():169-76. PubMed ID: 26850352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using phone sensors and an artificial neural network to detect gait changes during drinking episodes in the natural environment.
    Suffoletto B; Gharani P; Chung T; Karimi H
    Gait Posture; 2018 Feb; 60():116-121. PubMed ID: 29179052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility and Performance Test of a Real-Time Sensor-Informed Context-Sensitive Ecological Momentary Assessment to Capture Physical Activity.
    Dunton GF; Dzubur E; Intille S
    J Med Internet Res; 2016 Jun; 18(6):e106. PubMed ID: 27251313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular phones: are they detrimental?
    Salama OE; Abou El Naga RM
    J Egypt Public Health Assoc; 2004; 79(3-4):197-223. PubMed ID: 16918147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive asthma learning system utilizing a mobile phone platform.
    Wood J; Yablochnikov I; Finkelstein J
    AMIA Annu Symp Proc; 2008 Nov; ():1181. PubMed ID: 18999060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.