These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32290636)

  • 1. Wearable Inertial Sensor System Towards Daily Human Kinematic Gait Analysis: Benchmarking Analysis to MVN BIOMECH.
    Figueiredo J; Carvalho SP; Vilas-Boas JP; Gonçalves LM; Moreno JC; Santos CP
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training.
    Liu K; Yan J; Liu Y; Ye M
    J Healthc Eng; 2018; 2018():6570617. PubMed ID: 29610656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
    Fantozzi S; Giovanardi A; Borra D; Gatta G
    PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of multi-segment foot joint angles during gait using a wearable system.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the validity and reliability of sprint performance metrics computed using inertial sensors: A systematic review.
    Macadam P; Cronin J; Neville J; Diewald S
    Gait Posture; 2019 Sep; 73():26-38. PubMed ID: 31299501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations.
    Tadano S; Takeda R; Miyagawa H
    Sensors (Basel); 2013 Jul; 13(7):9321-43. PubMed ID: 23877128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers.
    Djurić-Jovičić MD; Jovičić NS; Popović DB; Djordjević AR
    J Biomech; 2012 Nov; 45(16):2849-54. PubMed ID: 22985472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network.
    Taborri J; Rossi S; Palermo E; Patanè F; Cappa P
    Sensors (Basel); 2014 Sep; 14(9):16212-34. PubMed ID: 25184488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study.
    Simonetti E; Bergamini E; Vannozzi G; Bascou J; Pillet H
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait characterization for osteoarthritis patients using wearable gait sensors (H-Gait systems).
    Tadano S; Takeda R; Sasaki K; Fujisawa T; Tohyama H
    J Biomech; 2016 Mar; 49(5):684-690. PubMed ID: 26947036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Analytical Validity of Stride Detection and Gait Parameters Reconstruction Using the Ankle-Mounted Inertial Measurement Unit Syde
    Michaud M; Guérin A; Dejean de La Bâtie M; Bancel L; Oudre L; Tricot A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.