These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 32290636)

  • 21. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study.
    Simonetti E; Bergamini E; Vannozzi G; Bascou J; Pillet H
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait characterization for osteoarthritis patients using wearable gait sensors (H-Gait systems).
    Tadano S; Takeda R; Sasaki K; Fujisawa T; Tohyama H
    J Biomech; 2016 Mar; 49(5):684-690. PubMed ID: 26947036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.
    Gholami M; Rezaei A; Cuthbert TJ; Napier C; Menon C
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Analytical Validity of Stride Detection and Gait Parameters Reconstruction Using the Ankle-Mounted Inertial Measurement Unit Syde
    Michaud M; Guérin A; Dejean de La Bâtie M; Bancel L; Oudre L; Tricot A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors.
    Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S
    Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint Inertial Sensor Orientation Drift Reduction for Highly Dynamic Movements.
    Fasel B; Sporri J; Chardonnens J; Kroll J; Muller E; Aminian K
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):77-86. PubMed ID: 28141537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity.
    Al-Amri M; Nicholas K; Button K; Sparkes V; Sheeran L; Davies JL
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical Gait Variable Estimation Using Wearable Sensors after Unilateral Total Knee Arthroplasty.
    Youn IH; Youn JH; Zeni JA; Knarr BA
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-simulation of human digital twins and wearable inertial sensors to analyse gait event estimation.
    Uhlenberg L; Derungs A; Amft O
    Front Bioeng Biotechnol; 2023; 11():1104000. PubMed ID: 37122859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.
    Zhang JT; Novak AC; Brouwer B; Li Q
    Physiol Meas; 2013 Aug; 34(8):N63-9. PubMed ID: 23893094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults.
    Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485
    [No Abstract]   [Full Text] [Related]  

  • 38. A flexible wearable sensor for knee flexion assessment during gait.
    Papi E; Bo YN; McGregor AH
    Gait Posture; 2018 May; 62():480-483. PubMed ID: 29674288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients.
    Kayaalp ME; Agres AN; Reichmann J; Bashkuev M; Duda GN; Becker R
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.