These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 32290730)
1. The CaMKII phosphorylation site Thr1604 in the Ca Li J; Wang S; Zhang J; Liu Y; Zheng X; Ding F; Sun X; Zhao M; Hao L Channels (Austin); 2020 Dec; 14(1):151-162. PubMed ID: 32290730 [TBL] [Abstract][Full Text] [Related]
2. Distinct roles of calmodulin and Ca Wang S; Li J; Liu Y; Zhang J; Zheng X; Sun X; Lei S; Kang Z; Chen X; Lei M; Hu H; Zeng X; Hao L Biochem Biophys Res Commun; 2020 Jun; 526(4):960-966. PubMed ID: 32303334 [TBL] [Abstract][Full Text] [Related]
3. Sustained increased CaMKII phosphorylation is involved in the impaired regression of isoproterenol-induced cardiac hypertrophy in rats. Li J; Gao Q; Wang S; Kang Z; Li Z; Lei S; Sun X; Zhao M; Chen X; Jiao G; Hu H; Hao L J Pharmacol Sci; 2020 Sep; 144(1):30-42. PubMed ID: 32665128 [TBL] [Abstract][Full Text] [Related]
4. Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of Ca Fan J; Fan W; Lei J; Zhou Y; Xu H; Kapoor I; Zhu G; Wang J Biochim Biophys Acta Mol Basis Dis; 2019 Jan; 1865(1):218-229. PubMed ID: 30463690 [TBL] [Abstract][Full Text] [Related]
5. Caveolae-specific activation loop between CaMKII and L-type Ca Tonegawa K; Otsuka W; Kumagai S; Matsunami S; Hayamizu N; Tanaka S; Moriwaki K; Obana M; Maeda M; Asahi M; Kiyonari H; Fujio Y; Nakayama H Am J Physiol Heart Circ Physiol; 2017 Mar; 312(3):H501-H514. PubMed ID: 28039202 [TBL] [Abstract][Full Text] [Related]
6. [Oxidative stress and calcium/calmodulin-dependent protein kinase II contribute to the development of sustained β adrenergic receptor-stimulated cardiac hypertrophy in rats]. Liu YL; Liu B; Qu YY; Chai HJ; Li R; Zhang L Sheng Li Xue Bao; 2013 Feb; 65(1):1-7. PubMed ID: 23426507 [TBL] [Abstract][Full Text] [Related]
8. Astragalus polysaccharide inhibits isoprenaline-induced cardiac hypertrophy via suppressing Ca²⁺-mediated calcineurin/NFATc3 and CaMKII signaling cascades. Dai H; Jia G; Liu X; Liu Z; Wang H Environ Toxicol Pharmacol; 2014 Jul; 38(1):263-71. PubMed ID: 24975447 [TBL] [Abstract][Full Text] [Related]
9. CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca(2+) channel and modulates the interaction of the channel with calmodulin. Wang WY; Hao LY; Minobe E; Saud ZA; Han DY; Kameyama M J Physiol Sci; 2009 Jul; 59(4):283-90. PubMed ID: 19340532 [TBL] [Abstract][Full Text] [Related]
10. Ca2+/calmodulin-dependent protein kinase IIdelta orchestrates G-protein-coupled receptor and electric field stimulation-induced cardiomyocyte hypertrophy. Zhang W; Qi F; Chen DQ; Xiao WY; Wang J; Zhu WZ Clin Exp Pharmacol Physiol; 2010 Aug; 37(8):795-802. PubMed ID: 20374261 [TBL] [Abstract][Full Text] [Related]
11. Blockade of L-type Ca Ikeda S; Matsushima S; Okabe K; Ikeda M; Ishikita A; Tadokoro T; Enzan N; Yamamoto T; Sada M; Deguchi H; Morimoto S; Ide T; Tsutsui H Sci Rep; 2019 Jul; 9(1):9850. PubMed ID: 31285514 [TBL] [Abstract][Full Text] [Related]
12. CaMKIIδ meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca Ji Y; Guo X; Zhang Z; Huang Z; Zhu J; Chen QH; Gui L Cardiovasc Pathol; 2017; 27():9-17. PubMed ID: 27940402 [TBL] [Abstract][Full Text] [Related]
13. Calmodulin kinases II and IV and calcineurin are involved in leukemia inhibitory factor-induced cardiac hypertrophy in rats. Kato T; Sano M; Miyoshi S; Sato T; Hakuno D; Ishida H; Kinoshita-Nakazawa H; Fukuda K; Ogawa S Circ Res; 2000 Nov; 87(10):937-45. PubMed ID: 11073891 [TBL] [Abstract][Full Text] [Related]
14. Isoproterenol-induced hypertrophy of neonatal cardiac myocytes and H9c2 cell is dependent on TRPC3-regulated Ca Han JW; Kang C; Kim Y; Lee MG; Kim JY Cell Calcium; 2020 Dec; 92():102305. PubMed ID: 33069962 [TBL] [Abstract][Full Text] [Related]
16. Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Chen X; Nakayama H; Zhang X; Ai X; Harris DM; Tang M; Zhang H; Szeto C; Stockbower K; Berretta RM; Eckhart AD; Koch WJ; Molkentin JD; Houser SR J Mol Cell Cardiol; 2011 Mar; 50(3):460-70. PubMed ID: 21111744 [TBL] [Abstract][Full Text] [Related]
17. Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new 'ISO on/off model'. Werhahn SM; Kreusser JS; Hagenmüller M; Beckendorf J; Diemert N; Hoffmann S; Schultz JH; Backs J; Dewenter M PLoS One; 2021; 16(6):e0248933. PubMed ID: 34138844 [TBL] [Abstract][Full Text] [Related]
18. Dynamic alterations in the CaV1.2/CaM/CaMKII signaling pathway in the left ventricular myocardium of ischemic rat hearts. Zhao Y; Hu HY; Sun DR; Feng R; Sun XF; Guo F; Hao LY DNA Cell Biol; 2014 May; 33(5):282-90. PubMed ID: 24548334 [TBL] [Abstract][Full Text] [Related]
19. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. Ronkainen JJ; Hänninen SL; Korhonen T; Koivumäki JT; Skoumal R; Rautio S; Ronkainen VP; Tavi P J Physiol; 2011 Jun; 589(Pt 11):2669-86. PubMed ID: 21486818 [TBL] [Abstract][Full Text] [Related]
20. Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Increases Small-Conductance Ca2+-Activated K+ Current in Patients with Chronic Atrial Fibrillation. Fan X; Yu Y; Lan H; Ou X; Yang L; Li T; Cao J; Zeng X; Li M Med Sci Monit; 2018 May; 24():3011-3023. PubMed ID: 29737974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]