BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 32291037)

  • 1. Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons.
    Smolikova G; Kreslavski V; Shiroglazova O; Bilova T; Sharova E; Frolov A; Medvedev S
    Funct Plant Biol; 2018 Jan; 45(2):228-235. PubMed ID: 32291037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the plastid conversion, photochemical activity and chlorophyll degradation in developing embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars.
    Smolikova G; Shiroglazova O; Vinogradova G; Leppyanen I; Dinastiya E; Yakovleva O; Dolgikh E; Titova G; Frolov A; Medvedev S
    Funct Plant Biol; 2020 Apr; 47(5):409-424. PubMed ID: 32209205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical activity in developing pea (Pisum sativum L.) cotyledons depends on the light transmittance of covering tissues and the spectral composition of light.
    Smolikova GN; Stepanova NV; Kamionskaya AM; Medvedev SS
    Vavilovskii Zhurnal Genet Selektsii; 2023 Dec; 27(8):980-987. PubMed ID: 38239962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome Map of Pea (
    Mamontova T; Lukasheva E; Mavropolo-Stolyarenko G; Proksch C; Bilova T; Kim A; Babakov V; Grishina T; Hoehenwarter W; Medvedev S; Smolikova G; Frolov A
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30558315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.
    Smolikova G; Dolgikh E; Vikhnina M; Frolov A; Medvedev S
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28926960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotypic abundance of carotenoids and polyphenolics in the hull of field pea (Pisum sativum L.).
    Marles MA; Warkentin TD; Bett KE
    J Sci Food Agric; 2013 Feb; 93(3):463-70. PubMed ID: 22806437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed.
    Lemontey C; Mousset-Déclas C; Munier-Jolain N; Boutin JP
    J Exp Bot; 2000 Feb; 51(343):167-75. PubMed ID: 10938823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients.
    Van Dongen JT; Ammerlaan AM; Wouterlood M; Van Aelst AC; Borstlap AC
    Ann Bot; 2003 May; 91(6):729-37. PubMed ID: 12714370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of Gibberellin A(12) and A(12)-Aldehyde in Developing Seeds of Pisum sativum L.
    Zhu YX; Davies PJ; Halinska A
    Plant Physiol; 1991 Sep; 97(1):26-33. PubMed ID: 16668380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity pattern and gene expression profile of aldehyde oxidase during the development of Pisum sativum seeds.
    Zdunek-Zastocka E
    Plant Sci; 2010 Nov; 179(5):543-8. PubMed ID: 21802613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery from Photoinhibition in Peas (Pisum sativum L.) Acclimated to Varying Growth Irradiances (Role of D1 Protein Turnover).
    Aro EM; McCaffery S; Anderson JM
    Plant Physiol; 1994 Mar; 104(3):1033-1041. PubMed ID: 12232146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the increase in cytochrome c oxidase activity in pea cotyledons during seed hydration. The presence of free cytochrome-c-oxidase subunits in dry cotyledons and their probable assembly into the holoenzyme during seed hydration.
    Matsuoka M; Asahi T
    Eur J Biochem; 1983 Aug; 134(2):223-9. PubMed ID: 6307687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L.
    Egley GH; Paul RN; Vaughn KC; Duke SO
    Planta; 1983 Apr; 157(3):224-32. PubMed ID: 24264151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbamoyl phosphate synthetase activity from the cotyledons of developing and germinating pea seeds.
    Kollöffel C; Verkerk BC
    Plant Physiol; 1982 Jan; 69(1):143-5. PubMed ID: 16662147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics.
    Marbach I; Mayer AM
    Plant Physiol; 1974 Dec; 54(6):817-20. PubMed ID: 16658981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.).
    Ranilla LG; Genovese MI; Lajolo FM
    J Agric Food Chem; 2007 Jan; 55(1):90-8. PubMed ID: 17199318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping grape berry photosynthesis by chlorophyll fluorescence imaging: the effect of saturating pulse intensity in different tissues.
    Breia R; Vieira S; da Silva JM; Gerós H; Cunha A
    Photochem Photobiol; 2013; 89(3):579-85. PubMed ID: 23336743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Synthesis in Cotyledons of Pisum sativum L: I. Changes in Cell-Free Amino Acid Incorporation Capacity during Seed Development and Maturation.
    Beevers L; Poulson R
    Plant Physiol; 1972 Apr; 49(4):476-81. PubMed ID: 16657987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.
    Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S
    G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early embryo invasion as a determinant in pea of the seed transmission of pea seed-borne mosaic virus.
    Wang D; Maule AJ
    J Gen Virol; 1992 Jul; 73 ( Pt 7)():1615-20. PubMed ID: 1629692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.