These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
980 related articles for article (PubMed ID: 32291085)
1. Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. Ma G; Wang T; Korhonen PK; Hofmann A; Sternberg PW; Young ND; Gasser RB Adv Parasitol; 2020; 108():175-229. PubMed ID: 32291085 [TBL] [Abstract][Full Text] [Related]
2. Toward integrative 'omics of the barber's pole worm and related parasitic nematodes. Ma G; Gasser RB; Wang T; Korhonen PK; Young ND Infect Genet Evol; 2020 Nov; 85():104500. PubMed ID: 32795511 [TBL] [Abstract][Full Text] [Related]
3. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. Gasser RB; Schwarz EM; Korhonen PK; Young ND Adv Parasitol; 2016; 93():519-67. PubMed ID: 27238012 [TBL] [Abstract][Full Text] [Related]
4. Fatty acid- and retinol-binding protein 6 does not control worm fatty acid content in Caenorhabditis elegans but might play a role in Haemonchus contortus parasitism. Wu F; Wei H; Chen X; Du Z; Huang Y; Shi H; Yang Y; Du A; Ma G Parasit Vectors; 2023 Jul; 16(1):230. PubMed ID: 37430357 [TBL] [Abstract][Full Text] [Related]
5. Dauer signalling pathway model for Haemonchus contortus. Ma G; Wang T; Korhonen PK; Stroehlein AJ; Young ND; Gasser RB Parasit Vectors; 2019 Apr; 12(1):187. PubMed ID: 31036054 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Analysis of Zheng Y; Young ND; Song J; Gasser RB Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569696 [TBL] [Abstract][Full Text] [Related]
7. The developmental phosphoproteome of Haemonchus contortus. Wang T; Ma G; Ang CS; Korhonen PK; Stroehlein AJ; Young ND; Hofmann A; Chang BCH; Williamson NA; Gasser RB J Proteomics; 2020 Feb; 213():103615. PubMed ID: 31846766 [TBL] [Abstract][Full Text] [Related]
8. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. Li F; Lok JB; Gasser RB; Korhonen PK; Sandeman MR; Shi D; Zhou R; Li X; Zhou Y; Zhao J; Hu M Int J Parasitol; 2014 Jun; 44(7):485-96. PubMed ID: 24727120 [TBL] [Abstract][Full Text] [Related]
9. Functional Genomics Tools for Haemonchus contortus and Lessons From Other Helminths. Britton C; Roberts B; Marks ND Adv Parasitol; 2016; 93():599-623. PubMed ID: 27238014 [TBL] [Abstract][Full Text] [Related]
10. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel. Winter AD; Weir W; Hunt M; Berriman M; Gilleard JS; Devaney E; Britton C BMC Genomics; 2012 Jan; 13():4. PubMed ID: 22216965 [TBL] [Abstract][Full Text] [Related]
11. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. Ma G; Wang T; Korhonen PK; Ang CS; Williamson NA; Young ND; Stroehlein AJ; Hall RS; Koehler AV; Hofmann A; Gasser RB Int J Parasitol; 2018 Aug; 48(9-10):763-772. PubMed ID: 29792880 [TBL] [Abstract][Full Text] [Related]
12. High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus. Wang T; Ma G; Ang CS; Korhonen PK; Koehler AV; Young ND; Nie S; Williamson NA; Gasser RB J Proteomics; 2019 Jul; 204():103375. PubMed ID: 31071474 [TBL] [Abstract][Full Text] [Related]
13. A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Preston S; Jabbar A; Gasser RB Infect Genet Evol; 2016 Jun; 40():368-373. PubMed ID: 26144657 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). Hu M; Lok JB; Ranjit N; Massey HC; Sternberg PW; Gasser RB Int J Parasitol; 2010 Mar; 40(4):405-15. PubMed ID: 19796644 [TBL] [Abstract][Full Text] [Related]
15. Pan-phylum Comparison of Nematode Metabolic Potential. Tyagi R; Rosa BA; Lewis WG; Mitreva M PLoS Negl Trop Dis; 2015 May; 9(5):e0003788. PubMed ID: 26000881 [TBL] [Abstract][Full Text] [Related]
16. Intestinal transcriptomes of nematodes: comparison of the parasites Ascaris suum and Haemonchus contortus with the free-living Caenorhabditis elegans. Yin Y; Martin J; Abubucker S; Scott AL; McCarter JP; Wilson RK; Jasmer DP; Mitreva M PLoS Negl Trop Dis; 2008 Aug; 2(8):e269. PubMed ID: 18682827 [TBL] [Abstract][Full Text] [Related]
17. The Use of Coke MC; Bell CA; Urwin PE Annu Rev Phytopathol; 2024 Sep; 62(1):157-172. PubMed ID: 38848590 [TBL] [Abstract][Full Text] [Related]
18. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Cantacessi C; Hofmann A; Campbell BE; Gasser RB Methods Mol Biol; 2015; 1247():437-74. PubMed ID: 25399114 [TBL] [Abstract][Full Text] [Related]
19. Ubiquitination pathway model for the barber's pole worm - Haemonchus contortus. Zheng Y; Ma G; Wang T; Hofmann A; Song J; Gasser RB; Young ND Int J Parasitol; 2022 Aug; 52(9):581-590. PubMed ID: 35853501 [TBL] [Abstract][Full Text] [Related]
20. Somatic proteome of Haemonchus contortus. Wang T; Ma G; Ang CS; Korhonen PK; Xu R; Nie S; Koehler AV; Simpson RJ; Greening DW; Reid GE; Williamson NA; Gasser RB Int J Parasitol; 2019 Mar; 49(3-4):311-320. PubMed ID: 30771357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]