These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32291279)

  • 1. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of a local transcription factor in governing cellular carbon/nitrogen homeostasis in Pseudomonas fluorescens.
    Naren N; Zhang XX
    Nucleic Acids Res; 2021 Apr; 49(6):3204-3216. PubMed ID: 33675669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Genetics; 2007 Aug; 176(4):2165-76. PubMed ID: 17717196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters.
    Sieira R; Arocena GM; Bukata L; Comerci DJ; Ugalde RA
    J Bacteriol; 2010 Jan; 192(1):217-24. PubMed ID: 19854911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Genetics; 2008 Jan; 178(1):185-95. PubMed ID: 18202367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens.
    de Bruijn I; Raaijmakers JM
    Appl Environ Microbiol; 2009 Jul; 75(14):4753-61. PubMed ID: 19447950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings.
    Zhang XX; George A; Bailey MJ; Rainey PB
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1867-1875. PubMed ID: 16735749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Klebsiella aerogenes.
    Schwacha A; Bender RA
    J Bacteriol; 1990 Sep; 172(9):5477-81. PubMed ID: 2203754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in transport explains polymorphism of histidine and urocanate utilization in a natural Pseudomonas population.
    Zhang XX; Chang H; Tran SL; Gauntlett JC; Cook GM; Rainey PB
    Environ Microbiol; 2012 Aug; 14(8):1941-51. PubMed ID: 22225938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida.
    Allison SL; Phillips AT
    J Bacteriol; 1990 Sep; 172(9):5470-6. PubMed ID: 2203753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urocanate as a potential signaling molecule for bacterial recognition of eukaryotic hosts.
    Zhang XX; Ritchie SR; Rainey PB
    Cell Mol Life Sci; 2014 Feb; 71(4):541-7. PubMed ID: 24305948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and multiple regulation of histidine utilization genes in Pseudomonas putida.
    Hu L; Phillips AT
    J Bacteriol; 1988 Sep; 170(9):4272-9. PubMed ID: 2842309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction.
    Zhang XX; Gauntlett JC; Oldenburg DG; Cook GM; Rainey PB
    J Bacteriol; 2015 Sep; 197(17):2867-78. PubMed ID: 26148710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the hutUH operator (hutUo) from Klebsiella aerogenes by DNA deletion analysis.
    Osuna R; Schwacha A; Bender RA
    J Bacteriol; 1994 Sep; 176(17):5525-9. PubMed ID: 8071231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GntR-like transcriptional regulator HutC involved in motility, biofilm-forming ability, and virulence in Vibrio parahaemolyticus.
    Li Y; Sun W; Wang Q; Yu Y; Wan Y; Zhou K; Guo R; Han X; Chen Z; Fang W; Jiang W
    Microb Pathog; 2022 Jun; 167():105546. PubMed ID: 35512440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida.
    Hu L; Allison SL; Phillips AT
    J Bacteriol; 1989 Aug; 171(8):4189-95. PubMed ID: 2666390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.