These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 32291551)
1. Botanical acaricides and repellents in tick control: current status and future directions. Nwanade CF; Wang M; Wang T; Yu Z; Liu J Exp Appl Acarol; 2020 May; 81(1):1-35. PubMed ID: 32291551 [TBL] [Abstract][Full Text] [Related]
2. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Benelli G; Pavela R; Canale A; Mehlhorn H Parasitol Res; 2016 Jul; 115(7):2545-60. PubMed ID: 27146901 [TBL] [Abstract][Full Text] [Related]
3. Repellent and acaricidal activity of essential oils and their components against Rhipicephalus ticks in cattle. Salman M; Abbas RZ; Israr M; Abbas A; Mehmood K; Khan MK; Sindhu ZUD; Hussain R; Saleemi MK; Shah S Vet Parasitol; 2020 Jul; 283():109178. PubMed ID: 32652458 [TBL] [Abstract][Full Text] [Related]
4. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus - A review. Banumathi B; Vaseeharan B; Rajasekar P; Prabhu NM; Ramasamy P; Murugan K; Canale A; Benelli G Vet Parasitol; 2017 Sep; 244():102-110. PubMed ID: 28917299 [TBL] [Abstract][Full Text] [Related]
5. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Pavela R; Canale A; Mehlhorn H; Benelli G Res Vet Sci; 2016 Dec; 109():1-9. PubMed ID: 27892855 [TBL] [Abstract][Full Text] [Related]
6. Development of essential oil-based phyto-formulations to control the cattle tick Rhipicephalus microplus using a mixture design approach. Lazcano Díaz E; Padilla Camberos E; Castillo Herrera GA; Estarrón Espinosa M; Espinosa Andrews H; Paniagua Buelnas NA; Gutiérrez Ortega A; Martínez Velázquez M Exp Parasitol; 2019 Jun; 201():26-33. PubMed ID: 31029699 [TBL] [Abstract][Full Text] [Related]
7. Botanical acaricides induced morphophysiological changes of reproductive and salivary glands in tick: A mini-review. Nwanade CF; Yu Z; Liu J Res Vet Sci; 2020 Oct; 132():285-291. PubMed ID: 32707419 [TBL] [Abstract][Full Text] [Related]
8. Current perspectives and difficulties in the design of acaricides and repellents from plant-derived compounds for tick control. Malak N; Niaz S; Miranda-Miranda E; Cossío-Bayúgar R; Duque JE; Amaro-Estrada I; Nasreen N; Khan A; Kulisz J; Zając Z Exp Appl Acarol; 2024 Jun; 93(1):1-16. PubMed ID: 38491268 [TBL] [Abstract][Full Text] [Related]
10. Season-long control of flea and tick infestations in a population of cats in the Aeolian archipelago using a collar containing 10% imidacloprid and 4.5% flumethrin. Otranto D; Dantas-Torres F; Napoli E; Solari Basano F; Deuster K; Pollmeier M; Capelli G; Brianti E Vet Parasitol; 2017 Dec; 248():80-83. PubMed ID: 29173546 [TBL] [Abstract][Full Text] [Related]
11. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Vudriko P; Okwee-Acai J; Tayebwa DS; Byaruhanga J; Kakooza S; Wampande E; Omara R; Muhindo JB; Tweyongyere R; Owiny DO; Hatta T; Tsuji N; Umemiya-Shirafuji R; Xuan X; Kanameda M; Fujisaki K; Suzuki H Parasit Vectors; 2016 Jan; 9():4. PubMed ID: 26727991 [TBL] [Abstract][Full Text] [Related]
12. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. George JE; Pound JM; Davey RB Parasitology; 2004; 129 Suppl():S353-66. PubMed ID: 15938518 [TBL] [Abstract][Full Text] [Related]
14. Present and future technologies for tick control. George JE Ann N Y Acad Sci; 2000; 916():583-8. PubMed ID: 11193677 [TBL] [Abstract][Full Text] [Related]
15. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. de la Fuente J; Almazán C; Canales M; Pérez de la Lastra JM; Kocan KM; Willadsen P Anim Health Res Rev; 2007 Jun; 8(1):23-8. PubMed ID: 17692140 [TBL] [Abstract][Full Text] [Related]
16. Tick vaccines: current status and future directions. de la Fuente J; Contreras M Expert Rev Vaccines; 2015; 14(10):1367-76. PubMed ID: 26289976 [TBL] [Abstract][Full Text] [Related]
17. A retrospective review on ixodid tick resistance against synthetic acaricides: implications and perspectives for future resistance prevention and mitigation. Agwunobi DO; Yu Z; Liu J Pestic Biochem Physiol; 2021 Mar; 173():104776. PubMed ID: 33771255 [TBL] [Abstract][Full Text] [Related]
18. In vitro bioassays used in evaluating plant extracts for tick repellent and acaricidal properties: A critical review. Adenubi OT; McGaw LJ; Eloff JN; Naidoo V Vet Parasitol; 2018 Apr; 254():160-171. PubMed ID: 29657003 [TBL] [Abstract][Full Text] [Related]
19. A review of the history of research and control of Rhipicephalus (Boophilus) microplus, babesiosis and anaplasmosis in Uruguay. Miraballes C; Riet-Correa F Exp Appl Acarol; 2018 Aug; 75(4):383-398. PubMed ID: 30083875 [TBL] [Abstract][Full Text] [Related]
20. Resistance status of ticks (Acari; Ixodidae) to amitraz and cypermethrin acaricides in Isoka District, Zambia. Muyobela J; Nkunika PO; Mwase ET Trop Anim Health Prod; 2015 Dec; 47(8):1599-605. PubMed ID: 26310511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]