These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32291731)

  • 1. Brief communication: Three errors and two problems in a recent paper: gazeNet: End-to-end eye-movement event detection with deep neural networks (Zemblys, Niehorster, and Holmqvist, 2019).
    Friedman L
    Behav Res Methods; 2020 Aug; 52(4):1671-1680. PubMed ID: 32291731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gazeNet: End-to-end eye-movement event detection with deep neural networks.
    Zemblys R; Niehorster DC; Holmqvist K
    Behav Res Methods; 2019 Apr; 51(2):840-864. PubMed ID: 30334148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review and Evaluation of Eye Movement Event Detection Algorithms.
    Birawo B; Kasprowski P
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel evaluation of two related and two independent algorithms for eye movement classification during reading.
    Friedman L; Rigas I; Abdulin E; Komogortsev OV
    Behav Res Methods; 2018 Aug; 50(4):1374-1397. PubMed ID: 29766396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-level saccade detection performance using deep neural networks.
    Bellet ME; Bellet J; Nienborg H; Hafed ZM; Berens P
    J Neurophysiol; 2019 Feb; 121(2):646-661. PubMed ID: 30565968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperparameter tuning using Lévy flight and interactive crossover-based reptile search algorithm for eye movement event classification.
    Pradeep V; Jayachandra AB; Askar SS; Abouhawwash M
    Front Physiol; 2024; 15():1366910. PubMed ID: 38812881
    [No Abstract]   [Full Text] [Related]  

  • 8. An electrooculogram-based binary saccade sequence classification (BSSC) technique for augmentative communication and control.
    Keegan J; Burke E; Condron J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2604-7. PubMed ID: 19965222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional neural networks can decode eye movement data: A black box approach to predicting task from eye movements.
    Cole ZJ; Kuntzelman KM; Dodd MD; Johnson MR
    J Vis; 2021 Jul; 21(7):9. PubMed ID: 34264288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From lab-based studies to eye-tracking in virtual and real worlds: conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019.
    Hooge ITC; Hessels RS; Niehorster DC; Diaz GJ; Duchowski AT; Pelz JB
    J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks.
    Zhang YJ; Huang JF; Gong N; Ling ZH; Hu Y
    J Acoust Soc Am; 2018 Jul; 144(1):478. PubMed ID: 30075670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data.
    Nyström M; Holmqvist K
    Behav Res Methods; 2010 Feb; 42(1):188-204. PubMed ID: 20160299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population.
    Fonseca P; van Gilst MM; Radha M; Ross M; Moreau A; Cerny A; Anderer P; Long X; van Dijk JP; Overeem S
    Sleep; 2020 Sep; 43(9):. PubMed ID: 32249911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms.
    Andersson R; Larsson L; Holmqvist K; Stridh M; Nyström M
    Behav Res Methods; 2017 Apr; 49(2):616-637. PubMed ID: 27193160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved algorithm for automatic detection of saccades in eye movement data and for calculating saccade parameters.
    Behrens F; Mackeben M; Schröder-Preikschat W
    Behav Res Methods; 2010 Aug; 42(3):701-8. PubMed ID: 20805592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of primate IBN spike trains using system identification techniques. I. Relationship To eye movement dynamics during head-fixed saccades.
    Cullen KE; Guitton D
    J Neurophysiol; 1997 Dec; 78(6):3259-82. PubMed ID: 9405544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.
    Larsson L; Schwaller A; Nyström M; Stridh M
    J Neurosci Methods; 2016 Dec; 274():13-26. PubMed ID: 27693470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine learning to detect events in eye-tracking data.
    Zemblys R; Niehorster DC; Komogortsev O; Holmqvist K
    Behav Res Methods; 2018 Feb; 50(1):160-181. PubMed ID: 28233250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.