These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32292166)

  • 1. The effectiveness of a multi-row Tamarix windbreak in reducing aeolian erosion and sediment flux, Niatak area, Iran.
    Torshizi MR; Miri A; Shahriari A; Dong Z; Davidson-Arnott R
    J Environ Manage; 2020 Jul; 265():110486. PubMed ID: 32292166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Windbreak Efficiency in Agricultural Landscape of the Central Europe: Multiple Approaches to Wind Erosion Control.
    Vacek Z; Řeháček D; Cukor J; Vacek S; Khel T; Sharma RP; Kučera J; Král J; Papaj V
    Environ Manage; 2018 Nov; 62(5):942-954. PubMed ID: 30143821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aeolian process effects on vegetation communities in an arid grassland ecosystem.
    Alvarez LJ; Epstein HE; Li J; Okin GS
    Ecol Evol; 2012 Apr; 2(4):809-21. PubMed ID: 22837828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of saltation emission in the Kubuqi Desert, North China.
    Du H; Xue X; Wang T
    Sci Total Environ; 2014 May; 479-480():77-92. PubMed ID: 24534701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source.
    Reynolds R; Belnap J; Reheis M; Lamothe P; Luiszer F
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7123-7. PubMed ID: 11390965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aeolian sediment transport rates in the middle reaches of the Yarlung Zangbo River, Tibet Plateau.
    Zhang Z; Zhang Y; Ma P; Za D
    Sci Total Environ; 2022 Jun; 826():154238. PubMed ID: 35259781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological effect of the riparian ecosystem in the lower reaches of the Tarim River in northwest China.
    Mamat Z; Halik U; Aishan T; Aini A
    PLoS One; 2019; 14(1):e0208462. PubMed ID: 30629595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil organic carbon (SOC) enrichment in aeolian sediments and SOC loss by dust emission in the desert steppe, China.
    Du H; Li S; Webb NP; Zuo X; Liu X
    Sci Total Environ; 2021 Dec; 798():149189. PubMed ID: 34333433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind-induced dust generation and transport mechanics on a bare agricultural field.
    Zobeck TM; Van Pelt RS
    J Hazard Mater; 2006 Apr; 132(1):26-38. PubMed ID: 16423453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion.
    Miri A; Dragovich D; Dong Z
    Sci Rep; 2017 Oct; 7(1):12831. PubMed ID: 28993700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations into the law of sand particle accumulation over railway subgrade with wind-break wall.
    Huang N; Gong K; Xu B; Zhao J; Dun H; He W; Xin G
    Eur Phys J E Soft Matter; 2019 Nov; 42(11):145. PubMed ID: 31773323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a High-Precision Aeolian Sand Collector in Field Wind and Sand Surveys.
    Liu X; Kang Y; Chen H; Lu H
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34299844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region.
    Zhang C; Shen Y; Li Q; Jia W; Li J; Wang X
    Sci Total Environ; 2018 Jun; 627():586-599. PubMed ID: 29426183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal features of soil grain-size distribution in a typical Tamarix cones in the Taklimakan Desert, China.
    Dong Z; Mao D; Ye M; Li S; Ma X; Liu S
    Sci Rep; 2022 Sep; 12(1):16461. PubMed ID: 36180513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.
    Webb NP; Herrick JE; Duniway MC
    Ecol Appl; 2014; 24(6):1405-20. PubMed ID: 29160663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.
    Martin RL; Kok JF
    Sci Adv; 2017 Jun; 3(6):e1602569. PubMed ID: 28630907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential differences in seed dispersals of low-height vegetation between single element and windbreak-like clumps.
    Fu LT
    Ecol Evol; 2019 Nov; 9(22):12639-12648. PubMed ID: 31788203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Windbreak and airflow performance of different synthetic shrub designs based on wind tunnel experiments.
    Pan X; Wang Z; Gao Y; Zhang Z; Meng Z; Dang X; Lu L; Chen J
    PLoS One; 2020; 15(12):e0244213. PubMed ID: 33370328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau.
    Munson SM; Belnap J; Okin GS
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):3854-9. PubMed ID: 21368143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using sediment grain size characteristics to assess effectiveness of mechanical sand barriers in reducing erosion.
    Xie Y; Dang X; Zhou Y; Hou Z; Li X; Jiang H; Zhou D; Wang J; Hai C; Zhou R
    Sci Rep; 2020 Aug; 10(1):14009. PubMed ID: 32814828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.