BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32292177)

  • 21. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.
    Heller MC; Keoleian GA; Willett WC
    Environ Sci Technol; 2013 Nov; 47(22):12632-47. PubMed ID: 24152032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relevance of supply chain characteristics in GHG emissions: The carbon footprint of Maltese juices.
    Roibás L; Rodríguez-García S; Valdramidis VP; Hospido A
    Food Res Int; 2018 May; 107():747-754. PubMed ID: 29580543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain.
    Goucher L; Bruce R; Cameron DD; Lenny Koh SC; Horton P
    Nat Plants; 2017 Mar; 3():17012. PubMed ID: 28248299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
    Mohareb EA; Heller MC; Guthrie PM
    Environ Sci Technol; 2018 May; 52(10):5545-5554. PubMed ID: 29717606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Food-miles and the relative climate impacts of food choices in the United States.
    Weber CL; Matthews HS
    Environ Sci Technol; 2008 May; 42(10):3508-13. PubMed ID: 18546681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day.
    van de Kamp ME; Seves SM; Temme EHM
    BMC Public Health; 2018 Feb; 18(1):264. PubMed ID: 29458352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of intensification of pastoral farming on greenhouse gas emissions in New Zealand.
    Pinares-Patino CS; Waghorn GC; Hegarty RS; Hoskin SO
    N Z Vet J; 2009 Oct; 57(5):252-61. PubMed ID: 19802038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.
    Farchi S; De Sario M; Lapucci E; Davoli M; Michelozzi P
    PLoS One; 2017; 12(8):e0182960. PubMed ID: 28813467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental impact of an agro-waste based polygeneration without and with CO2 storage: Life cycle assessment approach.
    Jana K; De S
    Bioresour Technol; 2016 Sep; 216():931-40. PubMed ID: 27336697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery.
    Parajuli R; Dalgaard T; Birkved M
    Sci Total Environ; 2018 Apr; 619-620():127-143. PubMed ID: 29145050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Animal board invited review: Animal agriculture and alternative meats - learning from past science communication failures.
    Van Eenennaam AL; Werth SJ
    Animal; 2021 Oct; 15(10):100360. PubMed ID: 34563799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?
    Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M
    J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of farming strategies on environmental impact of intensive dairy farms in Italy.
    Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A
    J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland.
    Clarke R; Sosa A; Murphy F
    Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon footprint of organic beef meat from farm to fork: a case study of short supply chain.
    Vitali A; Grossi G; Martino G; Bernabucci U; Nardone A; Lacetera N
    J Sci Food Agric; 2018 Nov; 98(14):5518-5524. PubMed ID: 29691877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing the default meal option at university events to reduce harmful environmental impacts: Six randomized controlled trials.
    Zhang AW; Wharton C; Cloonan S; Boronowsky R; Magesh V; Braverman I; Marquez A; Leidy H; Wang MC; Cleveland DA; Jay J; Stecher C
    Appetite; 2024 Sep; 200():107572. PubMed ID: 38908405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.
    Porter SD; Reay DS; Higgins P; Bomberg E
    Sci Total Environ; 2016 Nov; 571():721-9. PubMed ID: 27432722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating the carbon footprint of Mexican food consumption based on a high-resolution environmentally extended input-output model.
    Zhang Y; Yang Y
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):27192-27202. PubMed ID: 38509310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of diet-related GHG emissions using the environmental hourglass approach for the Mediterranean and new Nordic diets.
    Ulaszewska MM; Luzzani G; Pignatelli S; Capri E
    Sci Total Environ; 2017 Jan; 574():829-836. PubMed ID: 27665443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.