These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32292177)

  • 41. The role of meat in strategies to achieve a sustainable diet lower in greenhouse gas emissions: A review.
    Hyland JJ; Henchion M; McCarthy M; McCarthy SN
    Meat Sci; 2017 Oct; 132():189-195. PubMed ID: 28460836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Food waste at school. The environmental and cost impact of a canteen meal.
    García-Herrero L; De Menna F; Vittuari M
    Waste Manag; 2019 Dec; 100():249-258. PubMed ID: 31563025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8182-9. PubMed ID: 21846117
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential Changes in Greenhouse Gas Emissions from Refrigerated Supply Chain Introduction in a Developing Food System.
    Heard BR; Miller SA
    Environ Sci Technol; 2019 Jan; 53(1):251-260. PubMed ID: 30565938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Healthy diets with reduced environmental impact? - The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines.
    van de Kamp ME; van Dooren C; Hollander A; Geurts M; Brink EJ; van Rossum C; Biesbroek S; de Valk E; Toxopeus IB; Temme EHM
    Food Res Int; 2018 Feb; 104():14-24. PubMed ID: 29433779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How can we improve the environmental sustainability of poultry production?
    Leinonen I; Kyriazakis I
    Proc Nutr Soc; 2016 Aug; 75(3):265-73. PubMed ID: 26935025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dietary Strategies to Reduce Environmental Impact: A Critical Review of the Evidence Base.
    Ridoutt BG; Hendrie GA; Noakes M
    Adv Nutr; 2017 Nov; 8(6):933-946. PubMed ID: 29141975
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios.
    da Silva VP; van der Werf HM; Spies A; Soares SR
    J Environ Manage; 2010 Sep; 91(9):1831-9. PubMed ID: 20452717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioconversion of fruit and vegetable waste into earthworms as a new protein source: The environmental impact of earthworm meal production.
    Tedesco DEA; Conti C; Lovarelli D; Biazzi E; Bacenetti J
    Sci Total Environ; 2019 Sep; 683():690-698. PubMed ID: 31150889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Home-grown school feeding: assessment of a pilot program in Nepal.
    Shrestha RM; Schreinemachers P; Nyangmi MG; Sah M; Phuong J; Manandhar S; Yang RY
    BMC Public Health; 2020 Jan; 20(1):28. PubMed ID: 31914980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China.
    Wang Y; Ma Q; Li Y; Sun T; Jin H; Zhao C; Milne E; Easter M; Paustian K; Yong HWA; McDonagh J
    Environ Manage; 2019 Dec; 64(6):772-782. PubMed ID: 31748948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beef production in balance: considerations for life cycle analyses.
    Place SE; Mitloehner FM
    Meat Sci; 2012 Nov; 92(3):179-81. PubMed ID: 22551868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Environmental impacts of animal-based food supply chains with market characteristics.
    Chen W; Jafarzadeh S; Thakur M; Ólafsdóttir G; Mehta S; Bogason S; Holden NM
    Sci Total Environ; 2021 Aug; 783():147077. PubMed ID: 34088125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data.
    Aleksandrowicz L; Green R; Joy EJM; Harris F; Hillier J; Vetter SH; Smith P; Kulkarni B; Dangour AD; Haines A
    Environ Int; 2019 May; 126():207-215. PubMed ID: 30802638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Livestock greenhouse gas emissions and mitigation potential in Europe.
    Bellarby J; Tirado R; Leip A; Weiss F; Lesschen JP; Smith P
    Glob Chang Biol; 2013 Jan; 19(1):3-18. PubMed ID: 23504717
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets.
    Perignon M; Vieux F; Soler LG; Masset G; Darmon N
    Nutr Rev; 2017 Jan; 75(1):2-17. PubMed ID: 27974596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficiency and Carbon Footprint of the German Meat Supply Chain.
    Xue L; Prass N; Gollnow S; Davis J; Scherhaufer S; Östergren K; Cheng S; Liu G
    Environ Sci Technol; 2019 May; 53(9):5133-5142. PubMed ID: 30968696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment.
    Henriksson PJG; Belton B; Jahan KM; Rico A
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2958-2963. PubMed ID: 29507224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment.
    Cancino-Espinoza E; Vázquez-Rowe I; Quispe I
    Sci Total Environ; 2018 Oct; 637-638():221-232. PubMed ID: 29751305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States.
    Heller MC; Keoleian GA
    Environ Sci Technol; 2011 Mar; 45(5):1903-10. PubMed ID: 21348530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.