These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 32292407)
1. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Nonaka S; Salim E; Kamiya K; Hori A; Nainu F; Asri RM; Masyita A; Nishiuchi T; Takeuchi S; Kodera N; Kuraishi T Front Immunol; 2020; 11():520. PubMed ID: 32292407 [No Abstract] [Full Text] [Related]
2. Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. Opota O; Vallet-Gély I; Vincentelli R; Kellenberger C; Iacovache I; Gonzalez MR; Roussel A; van der Goot FG; Lemaitre B PLoS Pathog; 2011 Sep; 7(9):e1002259. PubMed ID: 21980286 [TBL] [Abstract][Full Text] [Related]
3. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form. Leone P; Bebeacua C; Opota O; Kellenberger C; Klaholz B; Orlov I; Cambillau C; Lemaitre B; Roussel A J Biol Chem; 2015 May; 290(21):13191-201. PubMed ID: 25847242 [TBL] [Abstract][Full Text] [Related]
4. Crystallization and preliminary X-ray analysis of monalysin, a novel β-pore-forming toxin from the entomopathogen Pseudomonas entomophila. Blemont M; Vincentelli R; Kellenberger C; Opota O; Lemaitre B; Roussel A; Leone P Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Aug; 69(Pt 8):930-3. PubMed ID: 23908046 [TBL] [Abstract][Full Text] [Related]
5. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Kuraishi T; Binggeli O; Opota O; Buchon N; Lemaitre B Proc Natl Acad Sci U S A; 2011 Sep; 108(38):15966-71. PubMed ID: 21896728 [TBL] [Abstract][Full Text] [Related]
6. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity. Lee SA; Jang SH; Kim BH; Shibata T; Yoo J; Jung Y; Kawabata SI; Lee BL Dev Comp Immunol; 2018 Apr; 81():116-126. PubMed ID: 29174605 [TBL] [Abstract][Full Text] [Related]
7. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Gatsogiannis C; Lang AE; Meusch D; Pfaumann V; Hofnagel O; Benz R; Aktories K; Raunser S Nature; 2013 Mar; 495(7442):520-3. PubMed ID: 23515159 [TBL] [Abstract][Full Text] [Related]
8. Assemblies of pore-forming toxins visualized by atomic force microscopy. Yilmaz N; Kobayashi T Biochim Biophys Acta; 2016 Mar; 1858(3):500-11. PubMed ID: 26577274 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanism of pore formation by aerolysin-like proteins. Podobnik M; Kisovec M; Anderluh G Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630149 [TBL] [Abstract][Full Text] [Related]
10. High-speed atomic force microscopy to study pore-forming proteins. Jiao F; Ruan Y; Scheuring S Methods Enzymol; 2021; 649():189-217. PubMed ID: 33712187 [TBL] [Abstract][Full Text] [Related]
11. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes. Romano FB; Rossi KC; Savva CG; Holzenburg A; Clerico EM; Heuck AP Biochemistry; 2011 Aug; 50(33):7117-31. PubMed ID: 21770428 [TBL] [Abstract][Full Text] [Related]
12. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Benz R Biochim Biophys Acta; 2016 Mar; 1858(3):526-37. PubMed ID: 26523409 [TBL] [Abstract][Full Text] [Related]
14. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. Shibata T; Maki K; Hadano J; Fujikawa T; Kitazaki K; Koshiba T; Kawabata S PLoS Pathog; 2015 Oct; 11(10):e1005244. PubMed ID: 26506243 [TBL] [Abstract][Full Text] [Related]
15. A rivet model for channel formation by aerolysin-like pore-forming toxins. Iacovache I; Paumard P; Scheib H; Lesieur C; Sakai N; Matile S; Parker MW; van der Goot FG EMBO J; 2006 Feb; 25(3):457-66. PubMed ID: 16424900 [TBL] [Abstract][Full Text] [Related]
16. Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Li Y; Li Y; Mengist HM; Shi C; Zhang C; Wang B; Li T; Huang Y; Xu Y; Jin T Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33572271 [TBL] [Abstract][Full Text] [Related]
17. Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Chakrabarti S; Liehl P; Buchon N; Lemaitre B Cell Host Microbe; 2012 Jul; 12(1):60-70. PubMed ID: 22817988 [TBL] [Abstract][Full Text] [Related]
18. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. Bárcena-Uribarri I; Benz R; Winterhalter M; Zakharian E; Balashova N Biochim Biophys Acta; 2015 Jul; 1848(7):1536-44. PubMed ID: 25858109 [TBL] [Abstract][Full Text] [Related]
19. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. Liehl P; Blight M; Vodovar N; Boccard F; Lemaitre B PLoS Pathog; 2006 Jun; 2(6):e56. PubMed ID: 16789834 [TBL] [Abstract][Full Text] [Related]
20. Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins. Mechaly AE; Bellomio A; Gil-Cartón D; Morante K; Valle M; González-Mañas JM; Guérin DM Structure; 2011 Feb; 19(2):181-91. PubMed ID: 21300287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]