These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32293139)
1. Functionalized Lipopeptide Micelles as Highly Efficient NMR Depolarization Seed Points for Targeted Cell Labelling in Xenon MRI. Schnurr M; Volk I; Nikolenko H; Winkler L; Dathe M; Schröder L Adv Biosyst; 2020 Mar; 4(3):e1900251. PubMed ID: 32293139 [TBL] [Abstract][Full Text] [Related]
2. Improving HyperCEST performance by favorable xenon exchange conditions in liposomal nanocarriers. Jost JO; Schröder L NMR Biomed; 2023 Jun; 36(6):e4714. PubMed ID: 35181965 [TBL] [Abstract][Full Text] [Related]
3. Lipopeptide-based micellar and liposomal carriers: Influence of surface charge and particle size on cellular uptake into blood brain barrier cells. Sydow K; Nikolenko H; Lorenz D; Müller RH; Dathe M Eur J Pharm Biopharm; 2016 Dec; 109():130-139. PubMed ID: 27702684 [TBL] [Abstract][Full Text] [Related]
4. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements. Bai Y; Hill PA; Dmochowski IJ Anal Chem; 2012 Nov; 84(22):9935-41. PubMed ID: 23106513 [TBL] [Abstract][Full Text] [Related]
5. An Expanded Palette of Xenon-129 NMR Biosensors. Wang Y; Dmochowski IJ Acc Chem Res; 2016 Oct; 49(10):2179-2187. PubMed ID: 27643815 [TBL] [Abstract][Full Text] [Related]
6. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR. Kunth M; Witte C; Schröder L J Chem Phys; 2014 Nov; 141(19):194202. PubMed ID: 25416884 [TBL] [Abstract][Full Text] [Related]
7. Brain endothelial cell targeting via a peptide-functionalized liposomal carrier for xenon hyper-CEST MRI. Schnurr M; Sydow K; Rose HM; Dathe M; Schröder L Adv Healthc Mater; 2015 Jan; 4(1):40-5. PubMed ID: 24985966 [TBL] [Abstract][Full Text] [Related]
8. High Exchange Rate Complexes of Schnurr M; Joseph R; Naugolny-Keisar A; Kaizerman-Kane D; Bogdanoff N; Schuenke P; Cohen Y; Schröder L Chemphyschem; 2019 Jan; 20(2):246-251. PubMed ID: 30079552 [TBL] [Abstract][Full Text] [Related]
9. Continuous-wave saturation considerations for efficient xenon depolarization. Kunth M; Witte C; Schröder L NMR Biomed; 2015 Jun; 28(6):601-6. PubMed ID: 25900330 [TBL] [Abstract][Full Text] [Related]
10. Bacterial spore detection and analysis using hyperpolarized Bai Y; Wang Y; Goulian M; Driks A; Dmochowski IJ Chem Sci; 2014 Aug; 5(8):3197-3203. PubMed ID: 25089181 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cell-penetrating lipopeptide micelles by spectroscopic methods. Gehne S; Sydow K; Dathe M; Kumke MU J Phys Chem B; 2013 Nov; 117(46):14215-25. PubMed ID: 24188016 [TBL] [Abstract][Full Text] [Related]
12. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. Witte C; Kunth M; Rossella F; Schröder L J Chem Phys; 2014 Feb; 140(8):084203. PubMed ID: 24588160 [TBL] [Abstract][Full Text] [Related]
13. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization. Klippel S; Döpfert J; Jayapaul J; Kunth M; Rossella F; Schnurr M; Witte C; Freund C; Schröder L Angew Chem Int Ed Engl; 2014 Jan; 53(2):493-6. PubMed ID: 24307424 [TBL] [Abstract][Full Text] [Related]
14. Dendronized cryptophanes as water-soluble xenon hosts for (129)Xe magnetic resonance imaging. Tyagi R; Witte C; Haag R; Schröder L Org Lett; 2014 Sep; 16(17):4436-9. PubMed ID: 25152959 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle-Based Contrast Agents for Jayapaul J; Schröder L Contrast Media Mol Imaging; 2019; 2019():9498173. PubMed ID: 31819739 [TBL] [Abstract][Full Text] [Related]
16. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Kunth M; Witte C; Schröder L Pharmaceuticals (Basel); 2021 Jan; 14(2):. PubMed ID: 33494166 [TBL] [Abstract][Full Text] [Related]
17. Molecular Sensing with Host Systems for Hyperpolarized Jayapaul J; Schröder L Molecules; 2020 Oct; 25(20):. PubMed ID: 33050669 [TBL] [Abstract][Full Text] [Related]
18. Protein Nanostructures Produce Self-Adjusting Hyperpolarized Magnetic Resonance Imaging Contrast through Physical Gas Partitioning. Kunth M; Lu GJ; Witte C; Shapiro MG; Schröder L ACS Nano; 2018 Nov; 12(11):10939-10948. PubMed ID: 30204404 [TBL] [Abstract][Full Text] [Related]
19. Quantitative evaluation of pulmonary gas-exchange function using hyperpolarized Li H; Zhang Z; Zhao X; Han Y; Sun X; Ye C; Zhou X NMR Biomed; 2018 Sep; 31(9):e3961. PubMed ID: 30040165 [TBL] [Abstract][Full Text] [Related]
20. Identification, classification, and signal amplification capabilities of high-turnover gas binding hosts in ultra-sensitive NMR. Kunth M; Witte C; Hennig A; Schröder L Chem Sci; 2015 Nov; 6(11):6069-6075. PubMed ID: 30090222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]