These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32293162)
1. Selective Cytotoxicity of a Novel Trp-Rich Peptide against Lung Tumor Spheroids Encapsulated inside a 3D Microfluidic Device. Dhiman N; Shagaghi N; Bhave M; Sumer H; Kingshott P; Rath SN Adv Biosyst; 2020 Apr; 4(4):e1900285. PubMed ID: 32293162 [TBL] [Abstract][Full Text] [Related]
2. Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Dhiman N; Shagaghi N; Bhave M; Sumer H; Kingshott P; Rath SN Cytotherapy; 2021 Jan; 23(1):25-36. PubMed ID: 32771259 [TBL] [Abstract][Full Text] [Related]
3. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818 [TBL] [Abstract][Full Text] [Related]
4. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Chen Y; Gao D; Liu H; Lin S; Jiang Y Anal Chim Acta; 2015 Oct; 898():85-92. PubMed ID: 26526913 [TBL] [Abstract][Full Text] [Related]
5. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Zuchowska A; Jastrzebska E; Chudy M; Dybko A; Brzozka Z Anal Chim Acta; 2017 Oct; 990():110-120. PubMed ID: 29029734 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process. Baye J; Galvin C; Shen AQ Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400 [TBL] [Abstract][Full Text] [Related]
7. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Gallegos-Martínez S; Choy-Buentello D; Pérez-Álvarez KA; Lara-Mayorga IM; Aceves-Colin AE; Zhang YS; Trujillo-de Santiago G; Álvarez MM Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38866003 [TBL] [Abstract][Full Text] [Related]
8. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
9. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Lim W; Hoang HH; You D; Han J; Lee JE; Kim S; Park S Analyst; 2018 Nov; 143(23):5841-5848. PubMed ID: 30379148 [TBL] [Abstract][Full Text] [Related]
10. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. Mehta V; Vilikkathala Sudhakaran S; Nellore V; Madduri S; Rath SN J Nanobiotechnology; 2024 Jun; 22(1):344. PubMed ID: 38890730 [TBL] [Abstract][Full Text] [Related]
11. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. Balsa LM; Ruiz MC; Santa Maria de la Parra L; Baran EJ; León IE J Inorg Biochem; 2020 Mar; 204():110975. PubMed ID: 31911364 [TBL] [Abstract][Full Text] [Related]
12. Coadministration of a tumor-penetrating peptide improves the therapeutic efficacy of paclitaxel in a novel air-grown lung cancer 3D spheroid model. Gupta SK; Torrico Guzmán EA; Meenach SA Int J Cancer; 2017 Nov; 141(10):2143-2153. PubMed ID: 28771722 [TBL] [Abstract][Full Text] [Related]
13. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Jeong K; Yu YJ; You JY; Rhee WJ; Kim JA Lab Chip; 2020 Feb; 20(3):548-557. PubMed ID: 31942592 [TBL] [Abstract][Full Text] [Related]
14. Comparison of EMT-Related and Multi-Drug Resistant Gene Expression, Extracellular Matrix Production, and Drug Sensitivity in NSCLC Spheroids Generated by Scaffold-Free and Scaffold-Based Methods. Qi X; Prokhorova AV; Mezentsev AV; Shen N; Trofimenko AV; Filkov GI; Sulimanov RA; Makarov VA; Durymanov MO Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362093 [TBL] [Abstract][Full Text] [Related]
15. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
16. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
17. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
18. Bioimaging of Mesenchymal Stem Cells Spatial Distribution and Interactions with 3D In Vitro Tumor Spheroids. Ferreira LP; Gaspar VM; Mano JF Methods Mol Biol; 2021; 2269():49-61. PubMed ID: 33687671 [TBL] [Abstract][Full Text] [Related]
19. Core/shell multicellular spheroids on chitosan as in vitro 3D coculture tumor models. Tsai CW; Wang JH; Young TH Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S651-S660. PubMed ID: 30311795 [TBL] [Abstract][Full Text] [Related]