BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32293260)

  • 1. Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data.
    Min EJ; Long Q
    BMC Bioinformatics; 2020 Apr; 21(1):141. PubMed ID: 32293260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multivariate approach to the integration of multi-omics datasets.
    Meng C; Kuster B; Culhane AC; Gholami AM
    BMC Bioinformatics; 2014 May; 15():162. PubMed ID: 24884486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative Exploratory Analysis of Two or More Genomic Datasets.
    Meng C; Culhane A
    Methods Mol Biol; 2016; 1418():19-38. PubMed ID: 27008008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.
    Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F
    Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiset sparse partial least squares path modeling for high dimensional omics data analysis.
    Csala A; Zwinderman AH; Hof MH
    BMC Bioinformatics; 2020 Jan; 21(1):9. PubMed ID: 31918677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penalized co-inertia analysis with applications to -omics data.
    Min EJ; Safo SE; Long Q
    Bioinformatics; 2019 Mar; 35(6):1018-1025. PubMed ID: 30165424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimension reduction and outlier detection of 3-D shapes derived from multi-organ CT images.
    Selle M; Kircher M; Schwennen C; Visscher C; Jung K
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):49. PubMed ID: 38355504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating biological information in sparse principal component analysis with application to genomic data.
    Li Z; Safo SE; Long Q
    BMC Bioinformatics; 2017 Jul; 18(1):332. PubMed ID: 28697740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical integration of two omics datasets using GO2PLS.
    Gu Z; El Bouhaddani S; Pei J; Houwing-Duistermaat J; Uh HW
    BMC Bioinformatics; 2021 Mar; 22(1):131. PubMed ID: 33736604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analytic principal component analysis in integrative omics application.
    Kim S; Kang D; Huo Z; Park Y; Tseng GC
    Bioinformatics; 2018 Apr; 34(8):1321-1328. PubMed ID: 29186328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components.
    Park M; Kim D; Moon K; Park T
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-Guided Biclustering via Sparse Variational EM Algorithm.
    Chang C; Oh J; Min EJ; Long Q
    10th IEEE Int Conf Big Knowl (2019); 2019 Nov; 2019():25-32. PubMed ID: 34290493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.
    Zhou Y; Wang P; Wang X; Zhu J; Song PX
    Genet Epidemiol; 2017 Jan; 41(1):70-80. PubMed ID: 27862229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative regression network for genomic association study.
    Vangimalla RR; Jeong HH; Sohn KA
    BMC Med Genomics; 2016 Aug; 9 Suppl 1(Suppl 1):31. PubMed ID: 27535739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMT network-based feature selection improves prognosis prediction in lung adenocarcinoma.
    Shao B; Bjaanæs MM; Helland Å; Schütte C; Conrad T
    PLoS One; 2019; 14(1):e0204186. PubMed ID: 30703089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification.
    Chung RH; Kang CY
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative sparse boosting analysis of cancer genomic commonality and difference.
    Sun Y; Sun Z; Jiang Y; Li Y; Ma S
    Stat Methods Med Res; 2020 May; 29(5):1325-1337. PubMed ID: 31282286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative analysis of multiple cancer genomic datasets under the heterogeneity model.
    Liu J; Huang J; Ma S
    Stat Med; 2013 Sep; 32(20):3509-21. PubMed ID: 23519988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.