These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32293263)

  • 1. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QuaDMutEx: quadratic driver mutation explorer.
    Bokhari Y; Arodz T
    BMC Bioinformatics; 2017 Oct; 18(1):458. PubMed ID: 29065872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing cancer driver gene identification through an integrative network and pathway approach.
    Song J; Song Z; Gong Y; Ge L; Lou W
    J Biomed Inform; 2024 Oct; 158():104729. PubMed ID: 39306314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MaxCLK: discovery of cancer driver genes via maximal clique and information entropy of modules.
    Liu J; Ma F; Zhu Y; Zhang N; Kong L; Mi J; Cong H; Gao R; Wang M; Zhang Y
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38065693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A latent variable model for evaluating mutual exclusivity and co-occurrence between driver mutations in cancer.
    Shuaibi A; Chitra U; Raphael BJ
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Driver Modules with Rarely Mutated Genes in Cancers.
    Li F; Gao L; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):390-401. PubMed ID: 29994261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.
    Liu S; Liu J; Xie Y; Zhai T; Hinderer EW; Stromberg AJ; Vanderford NL; Kolesar JM; Moseley HNB; Chen L; Liu C; Wang C
    Bioinformatics; 2021 Jun; 37(9):1189-1197. PubMed ID: 33165532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of driver pathways in cancer based on combinatorial patterns of somatic gene mutations.
    Li HT; Zhang J; Xia J; Zheng CH
    Neoplasma; 2016; 63(1):57-63. PubMed ID: 26639234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of a mutual exclusivity framework to identify driver mutations within oncogenic pathways.
    Wang X; Kostrzewa C; Reiner A; Shen R; Begg C
    Am J Hum Genet; 2024 Feb; 111(2):227-241. PubMed ID: 38232729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.