These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 32293454)
1. Ethylene glycol and glycolic acid production from xylonic acid by Enterobacter cloacae. Zhang Z; Yang Y; Wang Y; Gu J; Lu X; Liao X; Shi J; Kim CH; Lye G; Baganz F; Hao J Microb Cell Fact; 2020 Apr; 19(1):89. PubMed ID: 32293454 [TBL] [Abstract][Full Text] [Related]
2. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Salusjärvi L; Toivari M; Vehkomäki ML; Koivistoinen O; Mojzita D; Niemelä K; Penttilä M; Ruohonen L Appl Microbiol Biotechnol; 2017 Nov; 101(22):8151-8163. PubMed ID: 29038973 [TBL] [Abstract][Full Text] [Related]
3. Ethylene glycol and glycolic acid production by wild-type Escherichia coli. Lu X; Yao Y; Yang Y; Zhang Z; Gu J; Mojovic L; Knezevic-Jugovic Z; Baganz F; Lye G; Shi J; Hao J Biotechnol Appl Biochem; 2021 Aug; 68(4):744-755. PubMed ID: 32683722 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of ethylene glycol in Escherichia coli. Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Lee WK; Chung WJ Appl Microbiol Biotechnol; 2013 Apr; 97(8):3409-17. PubMed ID: 23233208 [TBL] [Abstract][Full Text] [Related]
5. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Salusjärvi L; Havukainen S; Koivistoinen O; Toivari M Appl Microbiol Biotechnol; 2019 Mar; 103(6):2525-2535. PubMed ID: 30707252 [TBL] [Abstract][Full Text] [Related]
6. Glycolic acid production using ethylene glycol-oxidizing microorganisms. Kataoka M; Sasaki M; Hidalgo AR; Nakano M; Shimizu S Biosci Biotechnol Biochem; 2001 Oct; 65(10):2265-70. PubMed ID: 11758919 [TBL] [Abstract][Full Text] [Related]
7. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Alkim C; Cam Y; Trichez D; Auriol C; Spina L; Vax A; Bartolo F; Besse P; François JM; Walther T Microb Cell Fact; 2015 Sep; 14():127. PubMed ID: 26336892 [TBL] [Abstract][Full Text] [Related]
8. Production of 2,3-dihydroxyisovalerate by Enterobacter cloacae. Yang Y; Zhang Z; Lu X; Gu J; Wang Y; Yao Y; Liao X; Shi J; Lye G; Baganz F; Hao J Enzyme Microb Technol; 2020 Oct; 140():109650. PubMed ID: 32912674 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli. Wang Y; Xian M; Feng X; Liu M; Zhao G Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the metabolism of ethylene glycol and glycolic acid in vitro by precision-cut tissue slices from female rat, rabbit and human liver. Booth ED; Dofferhoff O; Boogaard PJ; Watson WP Xenobiotica; 2004 Jan; 34(1):31-48. PubMed ID: 14742135 [TBL] [Abstract][Full Text] [Related]
11. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Liu H; Valdehuesa KN; Nisola GM; Ramos KR; Chung WJ Bioresour Technol; 2012 Jul; 115():244-8. PubMed ID: 21917451 [TBL] [Abstract][Full Text] [Related]
12. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13. Gao X; Ma Z; Yang L; Ma J Appl Biochem Biotechnol; 2014 Oct; 174(4):1572-1580. PubMed ID: 25123362 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652 [TBL] [Abstract][Full Text] [Related]
14. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Cabulong RB; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Lee CR; Chung WJ Enzyme Microb Technol; 2017 Feb; 97():11-20. PubMed ID: 28010767 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Mao X; Zhang B; Zhao C; Lin J; Wei D Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166 [TBL] [Abstract][Full Text] [Related]
16. Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue. Zhang CY; Peng XP; Li W; Guo XW; Xiao DG Biotechnol Appl Biochem; 2014; 61(5):501-9. PubMed ID: 24750278 [TBL] [Abstract][Full Text] [Related]
17. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals. Cam Y; Alkim C; Trichez D; Trebosc V; Vax A; Bartolo F; Besse P; François JM; Walther T ACS Synth Biol; 2016 Jul; 5(7):607-18. PubMed ID: 26186096 [TBL] [Abstract][Full Text] [Related]
18. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434 [TBL] [Abstract][Full Text] [Related]
19. Production of xylonic acid by Klebsiella pneumoniae. Wang C; Wei D; Zhang Z; Wang D; Shi J; Kim CH; Jiang B; Han Z; Hao J Appl Microbiol Biotechnol; 2016 Dec; 100(23):10055-10063. PubMed ID: 27629123 [TBL] [Abstract][Full Text] [Related]
20. A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli. Bañares AB; Valdehuesa KNG; Ramos KRM; Nisola GM; Lee WK; Chung WJ Appl Microbiol Biotechnol; 2020 Mar; 104(5):2097-2108. PubMed ID: 31900554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]