BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32293513)

  • 1. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data.
    Wang S; Lee S; Chu C; Jain D; Kerpedjiev P; Nelson GM; Walsh JM; Alver BH; Park PJ
    Genome Biol; 2020 Mar; 21(1):73. PubMed ID: 32293513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours.
    Harewood L; Kishore K; Eldridge MD; Wingett S; Pearson D; Schoenfelder S; Collins VP; Fraser P
    Genome Biol; 2017 Jun; 18(1):125. PubMed ID: 28655341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing.
    Suzuki T; Tsurusaki Y; Nakashima M; Miyake N; Saitsu H; Takeda S; Matsumoto N
    J Hum Genet; 2014 Dec; 59(12):649-54. PubMed ID: 25296578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations.
    Wu P; Li T; Li R; Jia L; Zhu P; Liu Y; Chen Q; Tang D; Yu Y; Li C
    Nat Commun; 2017 Dec; 8(1):1937. PubMed ID: 29203764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleome Analysis Reveals Structure-Function Relationships for Colon Cancer.
    Seaman L; Chen H; Brown M; Wangsa D; Patterson G; Camps J; Omenn GS; Ried T; Rajapakse I
    Mol Cancer Res; 2017 Jul; 15(7):821-830. PubMed ID: 28258094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal Translocations Detection in Cancer Cells Using Chromosomal Conformation Capture Data.
    Adeel MM; Rehman K; Zhang Y; Arega Y; Li G
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective normalization for copy number variation in Hi-C data.
    Servant N; Varoquaux N; Heard E; Barillot E; Vert JP
    BMC Bioinformatics; 2018 Sep; 19(1):313. PubMed ID: 30189838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying gene disruptions in novel balanced de novo constitutional translocations in childhood cancer patients by whole-genome sequencing.
    Ritter DI; Haines K; Cheung H; Davis CF; Lau CC; Berg JS; Brown CW; Thompson PA; Gibbs R; Wheeler DA; Plon SE
    Genet Med; 2015 Oct; 17(10):831-5. PubMed ID: 25569436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Cytogenomics: Technical Assessment of Long-Read Nanopore Whole-Genome Sequencing for Detecting Large Chromosomal Alterations in Mantle Cell Lymphoma.
    Hansen MH; Cédile O; Kjeldsen MLG; Thomassen M; Preiss B; von Neuhoff N; Abildgaard N; Nyvold CG
    J Mol Diagn; 2023 Nov; 25(11):796-805. PubMed ID: 37683892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.
    Engreitz JM; Agarwala V; Mirny LA
    PLoS One; 2012; 7(9):e44196. PubMed ID: 23028501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bellerophon: a hybrid method for detecting interchromosomal rearrangements at base pair resolution using next-generation sequencing data.
    Hayes M; Li J
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S6. PubMed ID: 23734783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering balanced translocations in infertile males by next-generation sequencing to identify candidate genes for spermatogenesis disorders.
    Yammine T; Reynaud N; Lejeune H; Diguet F; Rollat-Farnier PA; Labalme A; Plotton I; Farra C; Sanlaville D; Chouery E; Schluth-Bolard C
    Mol Hum Reprod; 2021 May; 27(6):. PubMed ID: 34009290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCOPE: A Normalization and Copy-Number Estimation Method for Single-Cell DNA Sequencing.
    Wang R; Lin DY; Jiang Y
    Cell Syst; 2020 May; 10(5):445-452.e6. PubMed ID: 32437686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing.
    Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J
    Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copy number variant analysis using genome-wide mate-pair sequencing.
    Smadbeck JB; Johnson SH; Smoley SA; Gaitatzes A; Drucker TM; Zenka RM; Kosari F; Murphy SJ; Hoppman N; Aypar U; Sukov WR; Jenkins RB; Kearney HM; Feldman AL; Vasmatzis G
    Genes Chromosomes Cancer; 2018 Sep; 57(9):459-470. PubMed ID: 29726617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.