These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32293858)

  • 1. Evaluation of Getter Metals in Na-Al-Si-O Aerogels and Xerogels for the Capture of Iodine Gas.
    Riley BJ; Chong S; Olszta MJ; Peterson JA
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19682-19692. PubMed ID: 32293858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents.
    Riley BJ; Kroll JO; Peterson JA; Matyáš J; Olszta MJ; Li X; Vienna JD
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32907-32919. PubMed ID: 28910079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaseous Iodine Sorbents: A Comparison between Ag-Loaded Aerogel and Xerogel Scaffolds.
    Chong S; Riley BJ; Peterson JA; Olszta MJ; Nelson ZJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26127-26136. PubMed ID: 32401479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental Remediation with Functional Aerogels and Xerogels.
    Riley BJ; Chong S
    Glob Chall; 2020 Oct; 4(10):2000013. PubMed ID: 33033626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodine Capture with Mechanically Robust Heat-Treated Ag-Al-Si-O Xerogel Sorbents.
    Chong S; Riley BJ; Kuang W; Olszta MJ
    ACS Omega; 2021 May; 6(17):11628-11638. PubMed ID: 34056318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction to "Evaluation of Getter Metals in Na-Al-Si-O Aerogels and Xerogels for the Capture of Iodine Gas".
    Riley BJ; Chong S; Olszta MJ; Peterson JA
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3491. PubMed ID: 33412843
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of NO
    Baskaran K; Elliott C; Ali M; Moon J; Beland J; Cohrs D; Chong S; Riley BJ; Chidambaram D; Carlson K
    J Hazard Mater; 2023 Mar; 446():130644. PubMed ID: 36587601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chalcogen-based aerogels as sorbents for radionuclide remediation.
    Riley BJ; Chun J; Um W; Lepry WC; Matyas J; Olszta MJ; Li X; Polychronopoulou K; Kanatzidis MG
    Environ Sci Technol; 2013 Jul; 47(13):7540-7. PubMed ID: 23763706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Getters for improved technetium containment in cementitious waste forms.
    Asmussen RM; Pearce CI; Miller BW; Lawter AR; Neeway JJ; Lukens WW; Bowden ME; Miller MA; Buck EC; Serne RJ; Qafoku NP
    J Hazard Mater; 2018 Jan; 341():238-247. PubMed ID: 28787657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO
    Wiechert AI; Ladshaw AP; Moon J; Abney CW; Nan Y; Choi S; Liu J; Tavlarides LL; Tsouris C; Yiacoumi S
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49680-49693. PubMed ID: 33090761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A discriminant analysis of trace elements in scalp hair of healthy controls and stage-IIIB non-small cell lung cancer (NSCLC) patients.
    Benderli Cihan Y; Oztürk Yıldırım S
    Biol Trace Elem Res; 2011 Dec; 144(1-3):272-94. PubMed ID: 21618005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radioiodine sorbent selection criteria.
    Riley BJ; Carlson K
    Front Chem; 2022; 10():969303. PubMed ID: 36118311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abatement of radioiodine in aqueous reprocessing off-gas.
    Greaney AT; Ngelale RO; Bruffey SH; Martin LR
    Front Chem; 2022; 10():1078668. PubMed ID: 36712985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive comparison of bismuth and silver functionalized nickel foam composites in capturing radioactive gaseous iodine.
    Tian Z; Chee TS; Zhu L; Duan T; Zhang X; Lei L; Xiao C
    J Hazard Mater; 2021 Sep; 417():125978. PubMed ID: 34015715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Long-Term Algae Extract (
    Merino JJ; Parmigiani-Izquierdo JM; Toledano Gasca A; Cabaña-Muñoz ME
    Antioxidants (Basel); 2019 Apr; 8(4):. PubMed ID: 31014007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Durability of Iodine Waste Forms in Dilute Conditions.
    Asmussen RM; Ryan JV; Matyas J; Crum JV; Reiser JT; Avalos N; McElroy EM; Lawter AR; Canfield NC
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30813531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.
    Shrivastava OP; Chourasia R
    J Hazard Mater; 2008 May; 153(1-2):285-92. PubMed ID: 17905513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes.
    Kravchyk K; Protesescu L; Bodnarchuk MI; Krumeich F; Yarema M; Walter M; Guntlin C; Kovalenko MV
    J Am Chem Soc; 2013 Mar; 135(11):4199-202. PubMed ID: 23414392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Al-O-F materials as novel adsorbents for gaseous radioiodine capture.
    Miller A; Wang Y
    J Environ Radioact; 2014 Jul; 133():35-9. PubMed ID: 23582500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cadmium and other metal losses from various municipal wastes during incineration disposal.
    Zhang FS; Yamasaki S; Nanzyo M; Kimura K
    Environ Pollut; 2001; 115(2):253-60. PubMed ID: 11706798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.