These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32293993)
61. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. Mukherjee M; Kim JE; Park YS; Kolomiets MV; Shim WB Mol Plant Pathol; 2011 Jun; 12(5):479-91. PubMed ID: 21535353 [TBL] [Abstract][Full Text] [Related]
62. Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Bluhm BH; Woloshuk CP Mol Plant Microbe Interact; 2005 Dec; 18(12):1333-9. PubMed ID: 16478053 [TBL] [Abstract][Full Text] [Related]
63. Cornmeal and starch influence the dynamic of fumonisin B, A and C production and masking in Fusarium verticillioides and F. proliferatum. Lazzaro I; Falavigna C; Galaverna G; Dall'Asta C; Battilani P Int J Food Microbiol; 2013 Aug; 166(1):21-7. PubMed ID: 23827804 [TBL] [Abstract][Full Text] [Related]
64. Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Desjardins AE; Plattner RD; Nelsen TC; Leslie JF Appl Environ Microbiol; 1995 Jan; 61(1):79-86. PubMed ID: 7887628 [TBL] [Abstract][Full Text] [Related]
65. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings. Arias SL; Mary VS; Otaiza SN; Wunderlin DA; Rubinstein HR; Theumer MG Phytochemistry; 2016 May; 125():54-64. PubMed ID: 26903312 [TBL] [Abstract][Full Text] [Related]
66. Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase. Boudreau BA; Larson TM; Brown DW; Busman M; Roberts ES; Kendra DF; McQuade KL Fungal Genet Biol; 2013 Aug; 57():1-10. PubMed ID: 23751979 [TBL] [Abstract][Full Text] [Related]
67. FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. Myung K; Li S; Butchko RA; Busman M; Proctor RH; Abbas HK; Calvo AM J Agric Food Chem; 2009 Jun; 57(11):5089-94. PubMed ID: 19382792 [TBL] [Abstract][Full Text] [Related]
68. Efficacy of fungal and bacterial antagonists for controlling growth, FUM1 gene expression and fumonisin B Samsudin NI; Rodriguez A; Medina A; Magan N Int J Food Microbiol; 2017 Apr; 246():72-79. PubMed ID: 28213318 [TBL] [Abstract][Full Text] [Related]
69. Analysis of potential fumonisin-producing Fusarium species in corn products from three main maize-producing areas in eastern China. Zhang L; Wang J; Zhang C; Wang Q J Sci Food Agric; 2013 Feb; 93(3):693-701. PubMed ID: 22821375 [TBL] [Abstract][Full Text] [Related]
70. A Survey of Mycoviral Infection in Jacquat AG; Theumer MG; Cañizares MC; Debat HJ; Iglesias J; García Pedrajas MD; Dambolena JS Viruses; 2020 Oct; 12(10):. PubMed ID: 33066620 [TBL] [Abstract][Full Text] [Related]
71. Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. Proctor RH; Plattner RD; Desjardins AE; Busman M; Butchko RA J Agric Food Chem; 2006 Mar; 54(6):2424-30. PubMed ID: 16536629 [TBL] [Abstract][Full Text] [Related]
72. Expression profile analysis of wild-type and fcc1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Pirttilä AM; McIntyre LM; Payne GA; Woloshuk CP Fungal Genet Biol; 2004 Jun; 41(6):647-56. PubMed ID: 15121086 [TBL] [Abstract][Full Text] [Related]
73. Genetic Differentiation Associated with Fumonisin and Gibberellin Production in Japanese Suga H; Arai M; Fukasawa E; Motohashi K; Nakagawa H; Tateishi H; Fuji SI; Shimizu M; Kageyama K; Hyakumachi M Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30341078 [No Abstract] [Full Text] [Related]
74. Pyrrocidine, a molecular off switch for fumonisin biosynthesis. Gao M; Glenn AE; Gu X; Mitchell TR; Satterlee T; Duke MV; Scheffler BE; Gold SE PLoS Pathog; 2020 Jul; 16(7):e1008595. PubMed ID: 32628727 [TBL] [Abstract][Full Text] [Related]
76. Development of an Efficient CRISPR/Cas9 System in Tang T; Ding Y; Guo W J Agric Food Chem; 2024 Jun; 72(25):14229-14240. PubMed ID: 38797952 [No Abstract] [Full Text] [Related]
77. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production. Atanasova-Penichon V; Bernillon S; Marchegay G; Lornac A; Pinson-Gadais L; Ponts N; Zehraoui E; Barreau C; Richard-Forget F Mol Plant Microbe Interact; 2014 Oct; 27(10):1148-58. PubMed ID: 25014591 [TBL] [Abstract][Full Text] [Related]
78. Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice. Matić S; Spadaro D; Prelle A; Gullino ML; Garibaldi A Int J Food Microbiol; 2013 Sep; 166(3):515-23. PubMed ID: 24055868 [TBL] [Abstract][Full Text] [Related]
79. Characterization of Zhou Z; Liu J; Zhang J; Yan H; Yi T; Shim WB Toxins (Basel); 2023 Nov; 15(11):. PubMed ID: 37999515 [TBL] [Abstract][Full Text] [Related]
80. Comparative genomics of Fusarium species causing Fusarium ear rot of maize. Hudson O; Meinecke CD; Brawner JT PLoS One; 2024; 19(10):e0306144. PubMed ID: 39423180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]