These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Molecular Initiating Events Associated with Drug-Induced Liver Malignant Tumors: An Integrated Study of the FDA Adverse Event Reporting System and Toxicity Predictions. Kurosaki K; Uesawa Y Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34202146 [TBL] [Abstract][Full Text] [Related]
23. Predicting drug-induced liver injury: The importance of data curation. Kotsampasakou E; Montanari F; Ecker GF Toxicology; 2017 Aug; 389():139-145. PubMed ID: 28652195 [TBL] [Abstract][Full Text] [Related]
24. In silico modeling to optimize interpretation of liver safety biomarkers in clinical trials. Church RJ; Watkins PB Exp Biol Med (Maywood); 2018 Feb; 243(3):300-307. PubMed ID: 29096561 [TBL] [Abstract][Full Text] [Related]
25. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313 [TBL] [Abstract][Full Text] [Related]
26. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities. Valerio LG; Cross KP Toxicol Appl Pharmacol; 2012 May; 260(3):209-21. PubMed ID: 22426359 [TBL] [Abstract][Full Text] [Related]
27. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method. Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923 [TBL] [Abstract][Full Text] [Related]
28. Pediatric Drug Safety Surveillance in FDA-AERS: A Description of Adverse Events from GRiP Project. de Bie S; Ferrajolo C; Straus SM; Verhamme KM; Bonhoeffer J; Wong IC; Sturkenboom MC; PLoS One; 2015; 10(6):e0130399. PubMed ID: 26090678 [TBL] [Abstract][Full Text] [Related]
29. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Chen M; Borlak J; Tong W Hepatology; 2013 Jul; 58(1):388-96. PubMed ID: 23258593 [TBL] [Abstract][Full Text] [Related]
30. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans. Part A: use of FDA post-market reports to create a database of hepatobiliary and urinary tract toxicities. Ursem CJ; Kruhlak NL; Contrera JF; MacLaughlin PM; Benz RD; Matthews EJ Regul Toxicol Pharmacol; 2009 Jun; 54(1):1-22. PubMed ID: 19422096 [TBL] [Abstract][Full Text] [Related]
31. Predicting Drug-Induced Liver Injury Using Ensemble Learning Methods and Molecular Fingerprints. Ai H; Chen W; Zhang L; Huang L; Yin Z; Hu H; Zhao Q; Zhao J; Liu H Toxicol Sci; 2018 Sep; 165(1):100-107. PubMed ID: 29788510 [TBL] [Abstract][Full Text] [Related]
32. In Vitro Drug-Induced Liver Injury Prediction: Criteria Optimization of Efflux Transporter IC50 and Physicochemical Properties. Yucha RW; He K; Shi Q; Cai L; Nakashita Y; Xia CQ; Liao M Toxicol Sci; 2017 Jun; 157(2):487-499. PubMed ID: 28369588 [TBL] [Abstract][Full Text] [Related]
33. In-silico approach for drug induced liver injury prediction: Recent advances. Saini N; Bakshi S; Sharma S Toxicol Lett; 2018 Oct; 295():288-295. PubMed ID: 29981923 [TBL] [Abstract][Full Text] [Related]
34. Prediction of drug-related cardiac adverse effects in humans--B: use of QSAR programs for early detection of drug-induced cardiac toxicities. Frid AA; Matthews EJ Regul Toxicol Pharmacol; 2010 Apr; 56(3):276-89. PubMed ID: 19941924 [TBL] [Abstract][Full Text] [Related]
35. Primary hepatocytes as a model to analyze species-specific toxicity and drug metabolism. Tuschl G; Lauer B; Mueller SO Expert Opin Drug Metab Toxicol; 2008 Jul; 4(7):855-70. PubMed ID: 18624675 [TBL] [Abstract][Full Text] [Related]
36. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity. Cruz-Monteagudo M; Cordeiro MN; Borges F J Comput Chem; 2008 Mar; 29(4):533-49. PubMed ID: 17705164 [TBL] [Abstract][Full Text] [Related]
37. Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data. Zhu X; Kruhlak NL Toxicology; 2014 Jul; 321():62-72. PubMed ID: 24721472 [TBL] [Abstract][Full Text] [Related]
38. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors. Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657 [TBL] [Abstract][Full Text] [Related]
39. Setting Clinical Exposure Levels of Concern for Drug-Induced Liver Injury (DILI) Using Mechanistic in vitro Assays. Shah F; Leung L; Barton HA; Will Y; Rodrigues AD; Greene N; Aleo MD Toxicol Sci; 2015 Oct; 147(2):500-14. PubMed ID: 26206150 [TBL] [Abstract][Full Text] [Related]
40. Most Influential Physicochemical and In Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction. Rana P; Kogut S; Wen X; Akhlaghi F; Aleo MD Chem Res Toxicol; 2020 Jul; 33(7):1780-1790. PubMed ID: 32338883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]