These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32294132)

  • 1. Effect of internal surface structure of the north wall on Chinese solar greenhouse thermal microclimate based on computational fluid dynamics.
    Liu X; Li H; Li Y; Yue X; Tian S; Li T
    PLoS One; 2020; 15(4):e0231316. PubMed ID: 32294132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of external thermal insulation layer on the Chinese solar greenhouse microclimate.
    Fan Z; Liu X; Yue X; Zhang L; Xie X; Li Y; Li T
    R Soc Open Sci; 2021 Dec; 8(12):211217. PubMed ID: 34950490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation.
    Li H; Li Y; Yue X; Liu X; Tian S; Li T
    PLoS One; 2020; 15(9):e0239851. PubMed ID: 32991619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of challenges in modeling heat and mass transfer for living on Mars.
    Yamashita M; Ishikawa Y; Kitaya Y; Goto E; Arai M; Hashimoto H; Tomita-Yokotani K; Hirafuji M; Omori K; Shiraishi A; Tani A; Toki K; Yokota H; Fujita O
    Ann N Y Acad Sci; 2006 Sep; 1077():232-43. PubMed ID: 17124127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the ridge position ratio on the thermal environment of the Chinese solar greenhouse.
    Wu X; Liu X; Yue X; Xu H; Li T; Li Y
    R Soc Open Sci; 2021 May; 8(5):201707. PubMed ID: 34040785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.
    Mayor TS; Couto S; Psikuta A; Rossi RM
    Int J Biometeorol; 2015 Dec; 59(12):1875-89. PubMed ID: 25994799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations.
    Katsoulas N; Antoniadis D; Tsirogiannis IL; Labraki E; Bartzanas T; Kittas C
    Int J Biometeorol; 2017 May; 61(5):943-956. PubMed ID: 27900475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Variation patterns of soil wall temperature and heat flux in sunken solar greenhouse].
    Huang X; Wang XF; Wei M; Hou JL; Liu FS; Li QM; Yang FJ; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1669-76. PubMed ID: 24066556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse.
    Xu D; Li Y; Zhang Y; Xu H; Li T; Liu X
    PLoS One; 2020; 15(11):e0242002. PubMed ID: 33156887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model.
    Voelker C; Alsaad H
    Indoor Air; 2018 May; 28(3):415-425. PubMed ID: 29393990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania.
    Yahia MW; Johansson E; Thorsson S; Lindberg F; Rasmussen MI
    Int J Biometeorol; 2018 Mar; 62(3):373-385. PubMed ID: 28612254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of sunken depth of energy-saving solar greenhouse on the diurnal variation and spatial distribution of environmental factors in the greenhouse].
    Li QM; Zi XZ; Yu XC
    Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):2061-8. PubMed ID: 22097368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.
    Orbegoso EM; Saavedra R; Marcelo D; La Madrid R
    J Environ Manage; 2017 Dec; 203(Pt 3):1080-1094. PubMed ID: 28728972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study on the impact of wall structure on the thermal performance of double-channel porous solar wall.
    Qi X; Lin S; Tao S; Patchigolla K
    Sci Rep; 2022 Sep; 12(1):15144. PubMed ID: 36071091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of temperature distribution over pipe surfaces of air-based cavity linear receiver for cross-linear concentration solar power system.
    Patel A; Soni A; Baredar P; Malviya R
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28621-28639. PubMed ID: 36396763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the human body's microclimate using a thermal manikin.
    Voelker C; Maempel S; Kornadt O
    Indoor Air; 2014 Dec; 24(6):567-79. PubMed ID: 24666331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical studies on the microclimate around a sleeping person and the related thermal neutrality issues.
    Pan D; Chan M; Deng S; Xia L; Xu X
    Ergonomics; 2011 Nov; 54(11):1088-100. PubMed ID: 22026952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the position of insulating materials in flat roofs exposed to sunshine to gain minimum heat into buildings under periodic heat transfer conditions.
    Shaik S; Talanki AB
    Environ Sci Pollut Res Int; 2016 May; 23(10):9334-44. PubMed ID: 26341337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of surface type on the absorbed radiation by a human under hot, dry conditions.
    Hardin AW; Vanos JK
    Int J Biometeorol; 2018 Jan; 62(1):43-56. PubMed ID: 28477222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.
    Li Y; Dai S; Zhang Y; Huang J; Su Y; Ma B
    J Appl Biomater Funct Mater; 2018 Jan; 16(1_suppl):81-92. PubMed ID: 29618243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.