BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32294473)

  • 21. Oxidative stress and aging. Role of exercise and its influences on antioxidant systems.
    Ji LL; Leeuwenburgh C; Leichtweis S; Gore M; Fiebig R; Hollander J; Bejma J
    Ann N Y Acad Sci; 1998 Nov; 854():102-17. PubMed ID: 9928424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.
    Slattery K; Bentley D; Coutts AJ
    Sports Med; 2015 Apr; 45(4):453-71. PubMed ID: 25398224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ROS scavenging activity and muscle damage prevention in eccentric exercise in rats.
    Maruhashi Y; Kitaoka K; Yoshiki Y; Nakamura R; Okano A; Nakamura K; Tsuyama T; Shima Y; Tomita K
    J Physiol Sci; 2007 Aug; 57(4):211-6. PubMed ID: 17594755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies for reducing oxidative damage in ageing skeletal muscle.
    Jackson MJ
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1363-8. PubMed ID: 19737589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of reactive oxygen species to sarcopenia and muscle ageing.
    Fulle S; Protasi F; Di Tano G; Pietrangelo T; Beltramin A; Boncompagni S; Vecchiet L; Fanò G
    Exp Gerontol; 2004 Jan; 39(1):17-24. PubMed ID: 14724060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress.
    König D; Wagner KH; Elmadfa I; Berg A
    Exerc Immunol Rev; 2001; 7():108-33. PubMed ID: 11579745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of Exercise-Induced Reactive Oxygen Species (ROS) Hormesis in Aging: Friend or Foe.
    Lesmana R; Parameswari C; Mandagi GF; Wahyudi JF; Permana NJ; Radhiyanti PT; Gunadi JW
    Cell Physiol Biochem; 2022 Dec; 56(6):692-706. PubMed ID: 36511580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats.
    Tromm CB; Pozzi BG; Paganini CS; Marques SO; Pedroso GS; Souza PS; Silveira PC; Silva LA; De Souza CT; Pinho RA
    Aging Clin Exp Res; 2016 Oct; 28(5):833-41. PubMed ID: 26620674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status.
    Nogueira JE; Passaglia P; Mota CMD; Santos BM; Batalhão ME; Carnio EC; Branco LGS
    Free Radic Biol Med; 2018 Dec; 129():186-193. PubMed ID: 30243702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidant signaling in skeletal muscle: a brief review.
    Ji LL
    Exp Gerontol; 2007 Jul; 42(7):582-93. PubMed ID: 17467943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative stress, exercise, and antioxidant supplementation.
    Urso ML; Clarkson PM
    Toxicology; 2003 Jul; 189(1-2):41-54. PubMed ID: 12821281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise and skeletal muscle ageing: cellular and molecular mechanisms.
    McArdle A; Vasilaki A; Jackson M
    Ageing Res Rev; 2002 Feb; 1(1):79-93. PubMed ID: 12039450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations.
    Kregel KC; Zhang HJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R18-36. PubMed ID: 16917020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerobic and strength training induce changes in oxidative stress parameters and elicit modifications of various cellular components in skeletal muscle of aged rats.
    Vilela TC; Effting PS; Dos Santos Pedroso G; Farias H; Paganini L; Rebelo Sorato H; Nesi RT; de Andrade VM; de Pinho RA
    Exp Gerontol; 2018 Jun; 106():21-27. PubMed ID: 29471131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Physical exercise, oxidative stress and damage].
    Apor P; Rádi A
    Orv Hetil; 2006 Jun; 147(22):1025-31. PubMed ID: 16913092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis.
    Kruk J; Aboul-Enein HY; Kładna A; Bowser JE
    Free Radic Res; 2019 May; 53(5):497-521. PubMed ID: 31039624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.