BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 32294557)

  • 21. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Discharge Disposition Following Meningioma Resection Using a Multi-Institutional Natural Language Processing Model.
    Muhlestein WE; Monsour MA; Friedman GN; Zinzuwadia A; Zachariah MA; Coumans JV; Carter BS; Chambless LB
    Neurosurgery; 2021 Mar; 88(4):838-845. PubMed ID: 33483747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural language processing for the automated detection of intra-operative elements in lumbar spine surgery.
    Biswas S; McMenemy L; Sarkar V; MacArthur J; Snowdon E; Tetlow C; George KJ
    Front Surg; 2023; 10():1271775. PubMed ID: 38164290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink.
    Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ
    Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. International external validation of the SORG machine learning algorithms for predicting 90-day and one-year survival of patients with spine metastases using a Taiwanese cohort.
    Yang JJ; Chen CW; Fourman MS; Bongers MER; Karhade AV; Groot OQ; Lin WH; Yen HK; Huang PH; Yang SH; Schwab JH; Hu MH
    Spine J; 2021 Oct; 21(10):1670-1678. PubMed ID: 33545371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does the SORG algorithm generalize to a contemporary cohort of patients with spinal metastases on external validation?
    Bongers MER; Karhade AV; Villavieja J; Groot OQ; Bilsky MH; Laufer I; Schwab JH
    Spine J; 2020 Oct; 20(10):1646-1652. PubMed ID: 32428674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of prediction models for clinically meaningful improvement in PROMIS scores after lumbar decompression.
    Karhade AV; Fogel HA; Cha TD; Hershman SH; Doorly TP; Kang JD; Bono CM; Harris MB; Schwab JH; Tobert DG
    Spine J; 2021 Mar; 21(3):397-404. PubMed ID: 33130302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of machine learning algorithms for prediction of mortality in spinal epidural abscess.
    Karhade AV; Shah AA; Bono CM; Ferrone ML; Nelson SB; Schoenfeld AJ; Harris MB; Schwab JH
    Spine J; 2019 Dec; 19(12):1950-1959. PubMed ID: 31255788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiation of ileostomy from colostomy procedures: assessing the accuracy of current procedural terminology codes and the utility of natural language processing.
    Vo E; Davila JA; Hou J; Hodge K; Li LT; Suliburk JW; Kao LS; Berger DH; Liang MK
    Surgery; 2013 Aug; 154(2):411-7. PubMed ID: 23790751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ophthalmology Operation Note Encoding with Open-Source Machine Learning and Natural Language Processing.
    Lee YM; Bacchi S; Macri C; Tan Y; Casson R; Chan WO
    Ophthalmic Res; 2023; 66(1):928-939. PubMed ID: 37231984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records.
    Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP
    Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated outcome classification of emergency department computed tomography imaging reports.
    Yadav K; Sarioglu E; Smith M; Choi HA
    Acad Emerg Med; 2013 Aug; 20(8):848-54. PubMed ID: 24033628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. International Validation of the SORG Machine-learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment.
    Tseng TE; Lee CC; Yen HK; Groot OQ; Hou CH; Lin SY; Bongers MER; Hu MH; Karhade AV; Ko JC; Lai YH; Yang JJ; Verlaan JJ; Yang RS; Schwab JH; Lin WH
    Clin Orthop Relat Res; 2022 Feb; 480(2):367-378. PubMed ID: 34491920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Knee Arthroplasty.
    Sagheb E; Ramazanian T; Tafti AP; Fu S; Kremers WK; Berry DJ; Lewallen DG; Sohn S; Maradit Kremers H
    J Arthroplasty; 2021 Mar; 36(3):922-926. PubMed ID: 33051119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural language processing algorithms for mapping clinical text fragments onto ontology concepts: a systematic review and recommendations for future studies.
    Kersloot MG; van Putten FJP; Abu-Hanna A; Cornet R; Arts DL
    J Biomed Semantics; 2020 Nov; 11(1):14. PubMed ID: 33198814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Language Processing for the Identification of Surgical Site Infections in Orthopaedics.
    Thirukumaran CP; Zaman A; Rubery PT; Calabria C; Li Y; Ricciardi BF; Bakhsh WR; Kautz H
    J Bone Joint Surg Am; 2019 Dec; 101(24):2167-2174. PubMed ID: 31596819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty.
    Kunze KN; Karhade AV; Polce EM; Schwab JH; Levine BR
    Arch Orthop Trauma Surg; 2023 Apr; 143(4):2181-2188. PubMed ID: 35508549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.