These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32294571)

  • 21. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multivariate modular metabolic engineering for pathway and strain optimization.
    Biggs BW; De Paepe B; Santos CN; De Mey M; Kumaran Ajikumar P
    Curr Opin Biotechnol; 2014 Oct; 29():156-62. PubMed ID: 24927371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic gene expression engineering as a tool in pathway engineering.
    Shen X; Wang J; Li C; Yuan Q; Yan Y
    Curr Opin Biotechnol; 2019 Oct; 59():122-129. PubMed ID: 31063878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning applications in systems metabolic engineering.
    Kim GB; Kim WJ; Kim HU; Lee SY
    Curr Opin Biotechnol; 2020 Aug; 64():1-9. PubMed ID: 31580992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of chemicals using dynamic control of metabolic fluxes.
    Xu P
    Curr Opin Biotechnol; 2018 Oct; 53():12-19. PubMed ID: 29145021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flux-sum analysis identifies metabolite targets for strain improvement.
    Lakshmanan M; Kim TY; Chung BK; Lee SY; Lee DY
    BMC Syst Biol; 2015 Oct; 9():73. PubMed ID: 26510838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding the metabolic engineering toolbox with directed evolution.
    Abatemarco J; Hill A; Alper HS
    Biotechnol J; 2013 Dec; 8(12):1397-410. PubMed ID: 23857895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering microbial consortia by division of labor.
    Roell GW; Zha J; Carr RR; Koffas MA; Fong SS; Tang YJ
    Microb Cell Fact; 2019 Feb; 18(1):35. PubMed ID: 30736778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete Biosynthesis of Anthocyanins Using
    Jones JA; Vernacchio VR; Collins SM; Shirke AN; Xiu Y; Englaender JA; Cress BF; McCutcheon CC; Linhardt RJ; Gross RA; Koffas MAG
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prospects of microbial cell factories developed through systems metabolic engineering.
    Gustavsson M; Lee SY
    Microb Biotechnol; 2016 Sep; 9(5):610-7. PubMed ID: 27435545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.
    Zadran S; Levine RD
    Appl Biochem Biotechnol; 2013 Jan; 169(1):55-65. PubMed ID: 23138337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for the Biosynthesis of Pharmaceuticals and Nutraceuticals in Microbes from Renewable Feedstock.
    Zhang C; Too HP
    Curr Med Chem; 2020; 27(28):4613-4621. PubMed ID: 32048953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states.
    Wu J; Bao M; Duan X; Zhou P; Chen C; Gao J; Cheng S; Zhuang Q; Zhao Z
    Nat Commun; 2020 Nov; 11(1):5521. PubMed ID: 33139748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current and future modalities of dynamic control in metabolic engineering.
    Lalwani MA; Zhao EM; Avalos JL
    Curr Opin Biotechnol; 2018 Aug; 52():56-65. PubMed ID: 29574344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The bright frontiers of microbial metabolic optogenetics.
    Wegner SA; Barocio-Galindo RM; Avalos JL
    Curr Opin Chem Biol; 2022 Dec; 71():102207. PubMed ID: 36103753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.
    Soma Y; Fujiwara Y; Nakagawa T; Tsuruno K; Hanai T
    Metab Eng; 2017 Sep; 43(Pt A):54-63. PubMed ID: 28800966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular parts and genetic circuits for metabolic engineering of microorganisms.
    Kim SG; Noh MH; Lim HG; Jang S; Jang S; Koffas MAG; Jung GY
    FEMS Microbiol Lett; 2018 Sep; 365(17):. PubMed ID: 30052915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level.
    Zhou S; Alper HS; Zhou J; Deng Y
    Crit Rev Biotechnol; 2023 Jun; 43(4):646-663. PubMed ID: 35450502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.
    Hou J; Qiu C; Shen Y; Li H; Bao X
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory.
    Czajka JJ; Okumuş B; Koffas MA; Blenner M; Tang YJ
    Curr Opin Biotechnol; 2020 Dec; 66():227-235. PubMed ID: 33007633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.